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Abstract

Neural networks have frequently been found to give accurate solutions to hard classifica-

tion problems. However neural networks do not make explained classifications because

the class boundaries are implicitly defined by the network weights, and these weights do

not lend themselves to simple analysis. Explanation is desirable because it gives problem

insight both to the designer and to the user of the classifier.

Many methods have been suggested for explaining the classification given by a neural

network, but they all suffer from one or more of the following disadvantages:

� a lack of equivalence between the network and the explanation;

� the absence of a probability framework required to express the uncertainty present

in the data;

� a restriction to problems with binary or coarsely discretised features;

� reliance on axis-aligned rules, which are intrinsically poor at describing the bound-

aries generated by neural networks.

The structure of the solution presented in this thesis rests on the following steps:

1. Train a standard neural network to estimate the class conditional probabilities.

Bayes’ rule then defines the optimal class boundaries.

2. Obtain an explicit representation of these class boundaries using a piece-wise lin-

earisation technique. Note that the class boundaries are otherwise only implicitly

defined by the network weights.

3. Obtain a safe but possibly partial description of this explicit representation using

rules based upon the city-block distance to a prototype pattern.

The methods required to achieve the last two represent novel work which seeks to explain

the answers given by a proven neural network solution to the classification problem.
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Chapter 1

Introduction

Artificial neural networks have been successfully applied to many problems in many do-

mains. The evidence for this statement can be found in the multitude of journals and books

on the subject, but example applications are to be found in finance [Ref95] (e.g. assessing

risk for insurance and credit purposes), medicine [Bax93, TWGH96] (e.g. prognosis after

treatment and diagnosis of disease), and industry [Leo97] (e.g. detection of faults and

general automation). Although the language of artifical neural networks suggests biolog-

ical analogies, this historical legacy is largely irrelevant to the solution of the problems

mentioned above. Trying to model and understand the brain is a goal quite distinct from

trying to solve specific commercial, medical, or industrial problems.

An artificial neural network (henceforth a feed-forward network) is a general-purpose pa-

rameterised function. These parameters are chosen by optimising some criterion based

on data. A particularly common use of feed-forward networks is to classify objects. Ex-

ample classification problems include deciding whether credit should be given to a client;

diagnosing a patient with breast cancer; or deciding if an aircraft engine is faulty. In these

classification applications, the input to the network is a set of features representing an

object, and the output of the network is the predicted class. Data is used to optimise the

network parameters such that future class predictions are as accurate as possible.

A frequent criticism of feed-forward networks is their lack of transparency (see for ex-

1



CHAPTER 1. INTRODUCTION 2

ample, [Tar98] page 49, [Hay99] pages 34–37, [MST94] page 221, [Wya95], [Bax95],

[CHK95]). In some sense a feed-forward network is a “black box” containing uninter-

pretable parameters offering very little insight as to why the output should take on one

value rather than another. In terms of classification problems, this means that the predict-

ed class of a particular object has not been intuitively justified. This may be unsatisfactory

for safety critical applications in aircraft, power stations, and medicine, and in those appli-

cations such as credit assessment where the refused applicant has the legal right to demand

an explanation. Explanation can also help both the designer and the user to understand the

data. Data visualisation techniques are frequently used for this purpose, and explanation

in the form of data description can provide a complementary solution. Lastly, producing

an explanation satisfies a basic psychological need.

This thesis attempts to address the issue of explaining the classifications produced by a

suitably trained feed-forward network. The purpose of this chapter is to provide a review

of the various approaches which have been suggested for explaining feed-forward net-

works. This leads naturally into a discussion which culminates in a list of ideal criteria.

The chapter ends by providing an overview of the remainder of this thesis.

1.1 Feed-forward networks

It is useful to provide a brief description of a typical feed-forward network. Comprehen-

sive discussions can be found for example in [Bis95], [Tar98], [Rip96], and [Hay99].

Figure 1.1 shows the structure of a common feed-forward network known as a multi-layer

perceptron (MLP). The connections between the nodes represent the parameters or weights

of the network. Evaluating the network proceeds from left to right. The input nodes serve

only to take on the values of the features making up an input pattern. The hidden nodes

pass a linear combination1 of the input nodes through an activation function. The most

common activation function is the sigmoid (or logistic) function, shown in figure 1.2.

1This linear combination includes a additive constant, which can be absorbed into the figure by making

one input node and one hidden node always assume the value of 1.0.
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Input nodes Hidden nodes Output nodes

Output weightsInput weights

Class
Pattern

Figure 1.1: A typical feed-forward network classifier. Each solid line represents a numer-

ical parameter (or weight) of the model, and the variability in the number of input, hidden,

and output nodes is indicated by the dashed lines.
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Figure 1.2: The sigmoid activation function, f(x) = 1
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Note that some feed-forward networks have more than one layer of hidden nodes, in which

case each layer is evaluated in turn. Evaluating the output nodes is the same as evaluating

the hidden nodes, except that a different activation function may be used. Finally, in a

classification network, the values of the output nodes are interpreted as the class of the

input pattern.

The weights of the network are obtained by training, which involves minimising some

error function based on the training data. Such training data must be labelled, which

means that each pattern is labelled with a corresponding class. Finally, a technique called

error back-propagation is a means of computing the partial derivatives of the error func-
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tion with respect to the weights. These derivatives are required by many optimisation

(training) algorithms, the most basic being gradient descent.

1.2 Approaches to extracting explanation from feed-forward

networks

Andrews et al have written several partial surveys of the field, [AJD95], [ACD+96],

[AG96a], which include a taxonomy of approaches extending [CS94]. The two most com-

monly used dimensions are decompositional — where the structure of the network is used

to structure a rule-base, and pedagogical — where extracting an explanation is seen as a

learning process. Several other dimensions are mentioned, such as the need for specialised

training procedures and the expressive power of the extracted rules. However these have

only rarely been adopted in the literature. Listed below are the dimensions which will be

used here to classify the various approaches to explanation from feed-forward networks.

1. Decompositional: the structure of the network is mapped directly into rules.

2. Pedagogical: rules are generated by observing the output of the network for differ-

ent inputs.

3. Functional: rules are generated by observing the range of values at the output of

the network in response to a range of input values.

4. Rule refinement: prior knowledge is first incorporated into a network structure,

which is then optimised using data before the knowledge is re-extracted.

5. Sensitivity analysis: a means of summarising the magnitude and sign of changes in

the network output due to various (small) changes in the input.

6. Fuzzy: fuzzy rules are extracted from the network.

There is some overlap between these dimensions. In particular, both rule refinement and

fuzzy logic approaches tend to use decompositional ideas, and many researchers report
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improved explanation when prior knowledge is first inserted into the network (rule re-

finement). In spite of this, the above categorisation provides a useful framework for the

literature review presented below. The following descriptions indicate the ideas present in

the field, and thus provide a background against which the research described in the later

chapters of this thesis can be evaluated.

Two useful on-line resources for rule extraction from neural networks are [And98] and

[Boz98].

1.2.1 Decompositional approaches

Decompositional approaches to rule extraction are characterised by a literal mapping be-

tween the structure of network and the structure of the rule-base. This invariably means

that each hidden and output node becomes a single rule, although this rule may later be

eliminated through combination with others. Decompositional algorithms invariably ap-

proximate each sigmoid in the network with a threshold function.

Fu

Fu, [Fu94], describes a method called knowledgetron (KT), for extracting rules from an

MLP type network. The algorithm works by analysing the weights connected to each

hidden node in order to find combinations of inputs which make the output of a hidden

node sigmoid greater (or less than) a threshold. These combinations are then written

as a rule from input space to a temporary symbol representing the output of the hidden

node. Repeating the process for all layers of the network produces a set of rules from

input space to output space via temporary symbols. Substitution is then used to eliminate

the temporary symbols. Finally, heuristics are used to increase the comprehensibility of

the rules; this involves dropping rule conditions until the accuracy on the training data

changes significantly.
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Note that the algorithm is restricted to problems with discrete2 network inputs, and makes

the usual decompositional assumption of approximating sigmoid functions with step func-

tions. Fu attempts to force the sigmoids to be saturated by effectively setting the input

layer weights to be large prior to training.

Fu compared KT with Quinlan’s decision tree algorithm C4.5, [Qui93]. Results on three

datasets were reported: Fisher iris, hepatitis prognosis, and hypothyroid diagnosis. Clas-

sification accuracy of KT was greater than C4.5 only on the iris data, and equal on the

hepatitis and hypothyroid. 5 rules explained the straightforward iris data, but the number

of rules on the other two problems was not reported.

Krishnan

Krishnan, [Kri96], describes a decompositional method of rule extraction from neural

networks called COMBO. This method is a systematic alternative to the heuristics used

by other decompositional methods to search for input combinations resulting in saturated

activation functions. Particular comparison is made to Fu’s KT algorithm, to which this

algorithm is very similar. However COMBO is more efficient because it sorts the weights,

considers the combinations in lexicographic order, and structures the search space using

a combination tree. The search is exhaustive, and so the complexity of the algorithm is

exponential.

The basic algorithm is limited to discrete input variables, but Krishnan extends it to con-

tinuous inputs by using a heuristic for the input layer and the COMBO search algorithm for

all other layers. Results showed that applying the method to the Fisher iris data produced

four rules with the same classification error as the network.

2The differences between discrete, continuous, categorical, and ordered variables will be discussed in

chapter 2. However the terminology used by the reviewed paper will be used in this chapter.
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Blasig

Blasig, [Bla93], describes a back-propagation-based training scheme called Gradient De-

scent Symbolic (GDS) rule generation that produces networks which can be transformed

into a concise set of rules. This is achieved by constraining network training with a term

which tries to force as many weights as possible to zero, whilst simultaneously saturating

the hidden node sigmoid functions so that they can be well approximated by step func-

tions. Hence this approach may be interpreted as a means of constraining classification

performance with explanation.

The method was tested on two problems: splice-junction recognition and prediction of

interest rates. The results for the first of these compared most favourably with several other

classification methods, producing a small percentage of errors with only a small number

of rules. The second problem has continuous values which had to be discretised into a

thermometer code representation because the algorithm only works for binary inputs. The

results were incomplete since neither the final number of rules nor the class priors were

reported.

Abe, Kayama, Takenaga, and Kitamura

Abe et al, [AKTK93], describe an algorithm for simplifying the decision process of an

MLP network. Their approach is based upon the concept of extracting discriminatory in-

formation from the hidden nodes. The weights of the input layer of an MLP define a set

of hyperplanes, the distances from which are assumed to provide more concise informa-

tion regarding class membership than the raw data. The process attempts to eliminate

the output layer by iteratively digitising the input hyperplanes and re-tuning the weights.

Digitising the input hyperplanes consists of assigning a 1 (or a 0) to each hidden node

such that majority of training patterns cause that hidden node to take on the value 1 (or 0).

Re-tuning consists of adapting the weights to achieve these 1 (or 0) values. The net result

is a set of hyperplanes which map input patterns to “digitised class vectors”. A decision

tree is then used to classify the outputs of these hyperplanes (no details given).
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The results on a number recognition problem showed very little change in accuracy from

the original network to the extracted algorithm. No details of the explanatory power of

the method were given.

Taha and Ghosh

Taha and Ghosh describe three methods of rule extraction, [TG96b, TG96a, DAC+96].

The first approach is strictly of the pedagogical type (see below) and uses a brute-force

search over all input combinations to form the rules. It requires the input variables to be

binary.

The second approach is decompositional and is based on ordering both the positive and the

negative weights of each hidden node into descending order. If-Then rules with “certainty

factors” are generated for each node, where the certainty factor indicates the magnitude

of the output for a given input. These rules are then combined to eliminate intermediate

(hidden) nodes.

The third approach is also decompositional but is not restricted to binary inputs. This

is achieved by discretising each continuous variable into a set of intervals. Linear pro-

gramming techniques (see for example [Fou98]) are used to find combinations of inputs

which cause the output of each hidden node to be greater than a threshold. This threshold

is used to set the certainty factor for the corresponding rule. Rules are then combined

to eliminate intermediate nodes. Note that this third approach has similarities with the

method described by Filer and Austin (see below), although the latter requires neither

discretisation nor linear programming.

After extraction using any of the three methods, the rules are ordered to maximise rule-

base performance on the training data.

Results are presented on three problems: an artificial dataset involving binary values gen-

erated from six rules; the Fisher iris problem; and the Wisconsin breast cancer problem.

The first algorithm suffered from discretisation of input space, but the second and third

approaches produced a small number of accurate rules which compared favourably with
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other algorithms (Setiono and Liu’s NeuroRule [SL96], Quinlan’s decision tree approach

C4.5 [Qui93], and Fu’s KT [Fu94]).

Setiono

Setiono, [Set97], describes an algorithm for extracting rules from neural networks by

pruning and hidden-unit splitting. First the network is pruned of any redundant weights.

Then the activation values of the hidden nodes are clustered into discrete values. This

enables rules to be used to describe the mapping from combinations of these discretised

values to network output nodes. However the rules from the input nodes to each hidden

node will be complex unless the number of non-zero weights is small. To achieve the latter

condition, any such offending hidden node is split into a sub-network which is trained to

be identical to the functionality of the hidden node. Rules are then obtained from this

sub-network by a recursive application of the complete rule extraction process.

Results are presented on a splice-junction problem and a sonar-return problem. The first

has discrete inputs, and the 16 reasonably comprehensive rules obtained have the same

accuracy as the network. The second problem has 208 examples of 60 continuous inputs

representing sonar returns from either a metal cylinder or a cylindrically shaped rock. In

order to facilitate rule extraction, these numeric attributes were discretised into bins and

then entered into the network using a thermometer coding scheme. Again, the accuracy

of the network was approximately the same as that given by the 8 extracted rules.

It should be noted that network pruning was a key component of rule extraction because

it dramatically reduced the number of weights in both networks: from 1220 to 16 in the

splice-junction problem, and from 186 to 15 in the sonar-return problem.

Unlike the other decompositional methods described above, this algorithm does not ap-

proximate each sigmoid activation function with a step function. It also ensures an ap-

proximate equivalence between the rules and the original network by looking at the per-

formance on the training data, both during pruning and during splitting.
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Bologna

Bologna, [Bol96], describes a method of rule extraction from a type of network called the

Interpretable Multi-Layer Perceptron (IMLP). This network differs from a standard multi-

layer perceptron in two ways. First, the hidden layer activation functions are unit step

functions rather than sigmoids. This implies that the error function is non-differentiable,

so simulated annealing is used to optimise the network. Second, each hidden node is only

connected to a single input node. However, each input may be connected to several hidden

nodes.

It is straightforward to extract rules from such an architecture, although the number of

rules can be large. To solve this problem, Bologna uses Quinlan’s C4.5 algorithm directly

on the output of the hidden nodes. This has the advantage of allowing the number of rules

to be limited, but also means that the rules will no longer make the same classification

as the network. Note that this method is similar to the one described by Abe et al (see

above).

Results on three datasets are presented: breast cancer diagnosis (discrete inputs); Aus-

tralian credit card (binary and continuous inputs); and image segmentation (continuous

input variables). These required between 5 and 30 rules to achieve accuracies comparable

with a standard MLP and C4.5.

1.2.2 Pedagogical approaches

Pedagogical methods of extracting rules work by observing the output of the network for

different input patterns. They may also consider the weights of the network, but unlike

the decompositional approach do not match the structure of the rule-base to that of the

network.
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Craven and Shavlik

Craven and Shavlik, [CS94] consider rule extraction as a learning problem. Two ora-

cles, called EXAMPLES and SUBSET, are used to generate training examples for the rule-

learning algorithm and to test the validity of hypothesised rules. The SUBSET oracle may

be implemented using either Thrun’s VIA algorithm, or a more efficient version of Towell

and Shavlick’s M-of-N algorithm. Both of these algorithms are described later.

The emphasis of the paper is in comparing the efficiency of exploring rule space using

oracles, with the efficiency of an exhaustive search-based approach. To make the exhaus-

tive search computationally feasible they restrict their experiments to networks with only

a single layer (no hidden layer). In addition their algorithm only works on domains with

discrete input features.

A DNA promoter dataset is used to assess the following aspects: the similarity between

the network and the rules; the number and complexity of the rules to achieve a given sim-

ilarity; and the number of operations required. Two different types of rule are considered:

the standard conjunctive rules,

if (conjunction of categories) then (particular class),

and the “M-of-N” style rules used by Towell and Shavlik,

if (M of these N categories) then (particular class).

Various graphs show that significantly fewer M-of-N rules than conjunction rules are re-

quired to achieve a given similarity with the original network. In addition, the number of

operations required by their learning approach is an order of magnitude smaller than the

exhaustive search.
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Tickle, Orlowski, and Diederich

Tickle et al describe what they call the DEDEC methodology, which is applicable to

a broad class of MLP like networks. The algorithm is similar to Craven and Shavlik

described above, but uses the network weights to rank and then cluster the inputs so as to

further increase the efficiency of the search over possible rules.

Results are presented on two discrete problems (the MONKs problem and a mushroom

classification problem) using three different network architectures (including the standard

MLP). Very simple and accurate rules were generated for all problems and networks.

However, both datasets are artificially generated from rules and so are intrinsically simple.

1.2.3 Functional approaches

The functional approach to rule extraction maps sets of values though the network. In the

two methods described below, each set of values is the region of input space described by

a rule. Thus for the rule to give the same classification as the network, the corresponding

set of values at the output of the network must all indicate the same class.

Thrun

Thrun, [Thr94, Thr95], describes a method of extracting rules from multi-layer percep-

trons which are guaranteed to give the same classification as the network. The method is

founded on validity interval analysis (VIA), which employs linear programming (see for

example, [Fou98]) to determine the consistency of a set of constraints on the activation

values of the network. Thrun uses VIA to check if a hypothesised rule gives the same clas-

sification as the network. Such a rule is said to be valid. Note that VIA is only guaranteed

to correctly identify all invalid rules, and may reject rules which are in fact valid.

Hypothesised rules are generated in one of two ways, referred to as specific-to-general

and general-to-specific. The former starts with a degenerate rule which only classifies

a single pattern. The volume of input space covered by this rule is then incrementally
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enlarged until it fails the validity test (using VIA). The general-to-specific approach to

rule hypothesis is to start with the most general rule possible, and to iteratively sub-divide

the volume of input space covered by the rule until it passes the validity test.

Thrun gives results for his algorithm on two problems: the so-called MONKs problems,

and a robot arm manipulator problem. The three MONKs problems all use discrete inputs,

and the data is artificially generated from different rules. To test the VIA approach, rules

were extracted from a network trained on this data. Results were satisfactory, showing that

a small number of effective rules could be (re-)extracted. For the robot arm manipulator

problem, the task is to find the mapping from 5 input variables (describing the configura-

tion of the arm) to an output which indicates whether the tip of the arm is above a fixed

height (the table on which the arm sits). 10 rules covered 30.2% of the volume of space

within the arm’s reach, whilst 10,000 rules were required to cover 84.4% of the volume.

Filer and Austin

Filer and Austin, [FA96, FSA96], describe an algorithm to extract rules from networks

trained on data with continuous values. These rules take the form of axis-aligned hyper-

cubes in input space, where an axis-aligned hypercube is the obvious extension to many

dimensions of the two dimensional example of a square with sides parallel to the axis. A

recursive search procedure is used to generate a set of these hypercubes which describe

the region of input space assigned to each class by the network. A technique called inter-

val analysis is used to map hypercubes from input space to output space and thus verify

the correctness of each rule. Interval analysis is a method of mapping intervals through

functions. To be more precise, the output interval thus obtained is guaranteed to be a

superset of the true image of the input interval.

Results of applying this approach on two datasets are compared with two other methods.

The first dataset (USER) has two continuous dimensions with 49 examples from two

classes. The second dataset (PAC) has four continuous dimensions with 150 examples

from each of three classes. The first of the two methods is a Multiple-Valued Logic (MVL)
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approach developed from the symbolic mapping method described in [SY96]. It requires

continuous data to be quantised. The second method is the decision tree algorithm ID3,

[Qui79].

A large number of rules (947) were required to achieve 88% accuracy on the USER data.

This compares with an accuracy of 96% achieved by the original network. On the PAC

dataset, approximately 2000 rules were required to achieve close to network accuracy;

reducing the number of rules to about 60 reduced the accuracy by approximately 20%.

The number of rules generated by the MVL and ID3 methods was not reported.

Overall, their algorithm proved much more robust to noisy data than either the ID3 or

the MVL approach. It is reasonable to suppose that this is because the neural network

solution (from which the rules were extracted) was less affected by the noise.

1.2.4 Rule refinement approaches

Rule refinement approaches are characterised by the following three stages: prior knowl-

edge in the form of rules is encoded in a network structure; this network is then optimised

using labelled data; finally the rules are re-extracted from the network. Typically these ap-

proaches use the decompositional idea of forming a correspondence between the structure

of the rule-base and structure of the network.

Andrews and Geva

Andrews and Geva, [AG96b, AG96a], describe a method of rule extraction (RULEX)

which works on Constrained Error Back Propagation (CEBP) networks. These networks

are constructed from activation functions called Locally Responsive Units (LRU), which

are themselves constructed from the difference between two offset sigmoid functions.

Each LRU forms a “ridge” in input space, and the weights of the network are constrained

such that these ridges are axis-aligned. CEBP networks are designed for incremental con-

structive training, which means that new local response units are added when no further
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significant decrease in error is possible. Andrews and Geva explain that this allows se-

mantics to be attached to the hidden nodes and knowledge to be inserted into the network.

After training, the RULEX algorithm is used to determine the active range of each ridge

and map this range into the constraints of a rule describing an axis-aligned hypercube in

input space. Heuristics are used to remove redundant rule conditions and redundant rules.

Results are given from applying the RULEX algorithm to three datasets: the Fisher IRIS

data, Mushroom, and a Heart disease dataset. Small numbers of rules with a high accuracy

are reported.

Towell and Shavlik

Towell and Shavlik, [TS91, TS92], describe an algorithm for extracting rules from Knowledge-

Based Artificial Neural Networks (KBANN). The rule extraction stage of the refinement

algorithm obtains so called “M-of-N” style rules from the network. These rules are of the

form

if (M of the following N antecedents) then (particular class)

which have several advantages over the more usual conjunctive rules

if (specified antecedents) then (particular class):

The first advantage is of compactness, since M-of-N style rules describe several cases

simultaneously. The second advantage is that these type of rules have an intuitive corre-

spondence with the network weights: the combination of any of the M antecedents ensures

a particular activation function is relatively saturated. The method for discovering these

combinations is based on grouping similar valued weights into clusters, replacing these

clusters of weights by their mean, eliminating insignificant groups, re-optimising the off-
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sets3, approximating the sigmoids by step functions, and finally expressing the result as

M-of-N rules. Note that only problems with binary variables are considered.

Two key assumptions are made to justify the rule-base-network correspondence. First, the

semantics of the hidden nodes are assumed to remain unchanged by training. Second, the

process makes unquantified changes to the functionality of the original network, which

means that there is no guaranteed relationship between the explanation and the neural

network.

On two molecular biology problems, the authors demonstrate that their algorithm pro-

duces more accurate and comprehensible rules than other methods (C4.5, LINUS, EI-

THER, and SUBSET). However they observe that their algorithm is limited to networks

which have been pre-structured with rules, and hence to problems where such a priori

knowledge is available.

Tresp, Hollatz, and Ahmad

Tresp et al, [THA92] describe a type of network which consists of normalised basis func-

tions. These basis functions may be of any of a number of types, but Gaussian functions

are used in their study. The network is pre-structured by combining a set of logical if-

then expressions obtained from an expert. The network has a probabilistic interpretation

which enables the likelihood function to be used as a criterion for training the network

from data. This training proceeds in one of four modes: forget, where gradient descent

or Expectation Maximisation (EM) is used to optimise the parameters; freeze, where the

initial configuration is frozen, but new units are added if a large discrepancy between pre-

diction and data occurs; correct, where each parameter is penalised for deviating from its

initial value; and internal teacher, where a penalty is added in terms of the function map-

ping rather than in terms of the function parameters. Thus these four possibilities preserve

the rule-based knowledge in different ways and by differing amounts.

3The offsets of the network are sometimes called bias weights.
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After training, the network is pruned of all unnecessary weights and then re-interpreted as

rules. Pruning is vital to ensuring that the final rules are as concise as possible.

Results are given on some data where the task is to predict the housing price in a Boston

neighbourhood. A network of 4 basis units corresponding to 4 rules gives results which are

approximately 10% better than a decision tree method (CART, [BFOS84]). They conclude:

Rule extraction provides a quantitative interpretation of what is “going on” in

the network, although, in general, it is difficult to define the domain where a

give rule “dominates” the network response and along which boundaries the

rules partition the input space.

Goodman, Higgins, Miller, and Smyth

Goodman et al [GHM92], describe a network architecture which estimates the posterior

probability of classes as a function of discrete input data. The network consists of 3 layers

of nodes: an input layer with a node for every value of every variable; a hidden layer

where each hidden node forms the binary conjunction of some subset of the input nodes;

and an output layer with one node per class, which forms a function of the weighted sum

of all hidden layer nodes and gives an estimate of the posterior probability of that class.

The effect of this structure is a collection of rules of the form

Rule

j

: if (x
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; : : : ; x

n

= X

z

n

) then y = Y

i with strength w

ij

The connections between the input and hidden layers are formed using a combination of

information theoretic and minimal descriptive length4 concepts to balance the trade-offs

between complexity and accuracy. The weights between the hidden and output layers are

then estimated by assuming that values of the hidden nodes are conditionally independent

given the class (often known as naive or idiot’s Bayes).

4The method of minimal descriptive length provides a trade-off between the complexity of a solution and

its performance.
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The performance of the above model is compared with that of a standard multi-layer per-

ceptron (MLP) and a first order Bayes classifier5. Five datasets were evaluated: LED

digits, a boolean function, congressional voting, diagnosis of breast cancer, and protein

secondary structure. All three classifiers had comparable accuracy except the Bayes clas-

sifier which was significantly worse on the Boolean function.

It is not clear whether the rules for the first three problems are comprehensible, but 11

rules were produced for the breast cancer problem and 194 for the protein data.

1.2.5 Sensitivity analysis based approaches

Sensitivity analysis of a network is a means of assessing the magnitude (and direction) of

change in the output for various (small) changes to the input. The idea has been used by a

number of researchers, both to produce graphs which provide a qualitative explanation of

the network, and to produce rules. For continuous input variables sensitivity analysis is a

means of summarising the partial derivatives of the network.

Saito and Nakano

An early use of sensitivity analysis was the PDP diagnostic system, [SN88], which uses a

method called relation factors to assess the effects on the network output (disease) from

individually changing different inputs (symptoms). Two types of relation factor are de-

scribed: the first considers the effects of switching a single symptom on when all other

symptoms are off; the second averages the effect of changing a particular symptom in

all patterns. It is shown that these relation factors agree with the relation factors used by

doctors.

Saito and Nakano then describe a related method for extracting rules which is based on

searching over the different combinations of (non-continuous) input variables. The search

is a greedy procedure which considers the effects of changing individual input compo-

5A first order Bayes classifier makes the assumption that the distribution of the input components are

conditionally independent given the class.



CHAPTER 1. INTRODUCTION 19

nents in turn. In addition, only those symbol combinations which are meaningful to the

problem domain are considered. Thus the method extracts rules guaranteed to give the

same classification as the network, although not all rules will be found because of the

limited depth of the search.

Applying the system to a network trained on a muscle-contraction headache problem gen-

erated 443 rules.

Goh and Wong

Goh and Wong, [GW96], have used sensitivity analysis to extract rules from networks

trained on patterns with continuous valued input features. They define a Point Sensitivity

Index (PSI) for of each input variable i,

psi
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where the sum is over all patterns and Æ is some small value. Peaks in the graphs of

each psi
i

(x) are then (loosely) used to write down rules. The authors use some artificial

datasets to demonstrate their approach.

Baxt

Baxt, [Bax93, Bax92] describes a method similar to the relation factors used by Saito and

Nakano. Histograms are used to show the quantitative effects on network output resulting

from the single-variable perturbation of training patterns. On the myocardial infarction

problem studied by Baxt, these histograms were strongly bi-modal. This suggests that

changing certain input variables has two characteristically different effects, depending on

the value of the other variables. Baxt comments that these relationships are quite different

from the traditional linear manner by which clinical decisions are made, and although they

“often do not appear to make a great deal of clinical sense, they must impart significant
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power to network performance in view of the high degree of accuracy with which the

network has been shown to function”.

Plate, Bert, Grace, and Band

Plate et al, [PBGB98], describe some methods for visualising the function computed by

a neural network. This visualisation assists in identifying interactions in the fitted model,

and extends the work of Baxt to continuous inputs by adapting the graphical plots of

generalised additive models6.

1.2.6 Fuzzy approaches

Numerous papers have been published on using Neuro-Fuzzy hybrids to form classifiers.

For example, [Hay90] describes a method which maps hidden nodes to fuzzy rules (and

so is another example of the decompositional approach), and [MP95] describes a connec-

tionist expert system model based on a fuzzy version of the multilayer perceptron (another

example of using a network for refinement). Two further methods of interest are described

below.

Buckley, Hayashi, and Czogala

Buckley et al [BHC92] prove that feed-forward neural networks and fuzzy expert systems

are functionally equivalent. In other words, a feed-forward network can always be con-

structed to approximate a fuzzy expert system with arbitrary accuracy, and conversely, a

fuzzy expert system can always be constructed to approximate a feed-forward network

with arbitrary accuracy. Note that to achieve this arbitrary accuracy may require an arbi-

trary number of nodes or rules.

However this equivalence does not imply (and the authors do not attempt to show) that a

neural network can be explained by translating it into a fuzzy expert system.

6A generalised additive model (GAM) takes a linear combination of non-linear functions of each input

component.
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Benı́tez, Castro, and Requena

Benı́tez et al [BCR97] show that by using a particular membership function and fuzzy log-

ic operator, a neural network can be made exactly equal to a fuzzy logic system. In some

respects this is a decompositional approach because each hidden node is mapped into a

single fuzzy rule. However these fuzzy rules are not approximations but interpretations

of the functionality of each hidden node.

The key steps in this interpretation are as follows. Each hidden node computes the value

f (

P

i

w

i

x

i

), and this may be interpreted as the fuzzy rule

if
X

i

w

i

x

i

is A then y is 1:0; (1.1)

where A is the fuzzy membership function formed from the sigmoid function f . In the

notation of fuzzy logic, this is written �

A

(a) = f(a). By defining a suitable fuzzy logic

operator, �, equation (1.1) may be identically expressed

if w
1
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1

is A � : : : � w
n

x

n

is A then y is 1:0: (1.2)

The authors discuss the semantics of this notation, describing the symbol � as an interactive-

or operator.

Defuzzification consists of using the network output weights to form a linear combination

of the degrees with which each rule fires. This output is used to determine the class of any

pattern. Note that the output node is assumed to be linear.

Results are presented on the Fisher iris data, where a network with a single hidden node

is described with the corresponding rule. Note that the interpretation of these rules relies

critically on an intuitive understanding of the semantics of the interactive-or operator.
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1.2.7 Others

Sejnowski and Rosenberg

Sejnowski and Rosenberg, [SR87], attempted to understand the functioning of a network

trained to convert english text into speech (NETtalk). In particular they aimed to un-

derstand the coding methods used by the network by studying the patterns of activation

amongst the hidden nodes. Their network had 80 hidden nodes and they discovered that

on average about 20% of the hidden nodes were highly activated for any given input. A

simple plot of these activations proved uninformative, but a hierarchical clustering tech-

nique applied to the average activations over letter-to-sound correspondences was more

successful: the vowels and consonants were completely separated, and for the vowels the

next most important variable was the letter whereas the consonants were clustered more

according to the similarity of the sounds. Note that this analysis did not explain why the

network produced certain outputs. However it did give some insight into the problem

domain.

Sanger

Sanger, [San89], describes a technique called contribution analysis for deriving the re-

sponsibilities of individual hidden units in implementing the input-output mapping of the

network. The contribution from a hidden unit is defined as the product of the weight

connecting that unit to an output unit multiplied by the activation of that unit when a par-

ticular pattern is applied to the network. Thus there is a contribution associated with every

hidden unit, output unit, and input pattern. This forms a three-dimensional space which

was visualised by finding the principle component of two-dimensional slices. Sanger ex-

plains why this is more informative than looking at either the weights or the activations

separately.

The idea was used to explain a network trained to convert english text into speech (NETtalk).

Only very general conclusions were reached, such as “redundant output units are handled
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by identical patterns of hidden units, and the amount of responsibility taken on by a hidden

unit is inversely proportional to the number of hidden units.”.

1.3 Discussion

An immediate conclusion from the above review is that almost all algorithms produce an

explanation consisting of if-then rules. Those approaches which do not (e.g. sensitivity

analysis) are useful for gaining insight into the solution, but do not explain why a partic-

ular pattern was assigned to a particular class. Hence it will be assumed that rules are the

most suitable means of explaining a network.

A vital aspect of explanation using rules is the size of the rule-base. Clearly hundreds of

rules make the explanation incomprehensible, and a dozen or so is probably an acceptable

maximum. However several of the algorithms described above required many more rules

than this in order to cover a reasonable proportion of the data. Related to the size of

the rule-base is the expressive power of individual rules, and one would expect a small

number of more expressive rules to be equivalent to a larger number of less expressive

rules. For example, M-of-N style rules are efficient at describing many conditions on

categorical variables in an intuitively acceptable manner, and Craven and Shavlik [CS94]

demonstrated that fewer M-of-N rules were required than ordinary conjunctive rules.

It is noticeable that most of these rule extraction methods do not guarantee a fixed re-

lationship between the generated rule-base and the network. In this sense they are new

learning algorithms which are based on a feed-forward network, and cannot therefore be

said to explain the original network. This is particularly true of the decompositional ap-

proaches because they approximate sigmoids by step functions and modify the weights.

These transformations make unknown changes to the functionality of the network. Indeed

[MSS91] has shown that there are Boolean functions which can be computed by a network

of sigmoid functions but not by a network of threshold functions with the same topology.
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Rule refinement algorithms do not need to guarantee an equivalence between the network

and the rules. This is because their remit is to produce a rule-based classifier which uses

prior rule knowledge and labelled data. Feed-forward network ideas may be used, but

this does not imply that this approach can be used to explain how a standard feed-forward

network classifies. There are many problems for which prior rule-based knowledge is

unavailable.

The two functional approaches (Thrun, and Filer and Austin) both produced rules which

were guaranteed to make the same classification as the network. However they both need-

ed a large number of rules in order to classify a significant fraction of the data. In contrast,

those decompositional approaches which extracted axis-aligned rules all generated far s-

maller rule-bases which still covered most of the data. This is not a coincidence, and it

will be shown later in this thesis that there is an inherent trade-off between ensuring that

the rules make the same classification as the network, and maximising the fraction of data

classified by the rules.

Many of the decompositional and pedagogical algorithms relied on searching over com-

binations of inputs. This is clearly a computational burden since there are
Q

N

i

n

i

com-

binations for N variables where the ith variable can take one of n
i

values. Most of the

algorithms overcome this problem by trimming the search, but this has the disadvantage

of either producing rules which do not cover all the patterns, or of producing rules which

do not necessarily make the same classification as the network.

Many of the algorithms do not work on datasets with continuous variables. Solving this

problem by discretisation has at least two disadvantages: first, it constrains the network

to work with quantised values which have not been optimally chosen for classification

performance; and second, it may (depending on the coding required by the algorithm)

significantly increase the number of input dimensions. This has significant consequences

on the algorithms which use a search-based approach.

Lastly, probability theory is not part of the framework for most of the reviewed papers.

This is surprising given its suitability both for describing the uncertainty in mapping pat-
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terns to classes, and for understanding the problems of learning a mapping using a sample

of data from some underlying population.

1.4 Conclusions

The conclusion from the above discussion is that there is a clear need for a rule extraction

method which:

1. is expressed within a probability framework,

2. generates a rule-base which has a known relationship with the network,

3. produces a small number of comprehensible rules which cover a significant fraction

of all data,

4. operates on a feed-forward network of a standard type which has been trained using

a standard procedure,

5. is not restricted to datasets with only categorical variables.

This thesis describes such a method. Note that some problems do not require all of these

properties. For example, a statistical model is not required if the data is fundamentally

non-random and can be enumerated in entirety. Alternatively, the data may not contain any

continuous variables, or a standard feed-forward network technique may be sub-optimal

because it does not take advantage of prior rule-based knowledge. However there is a sig-

nificant class of problems which would benefit from rule extraction algorithms satisfying

the above properties.

In terms of the classification scheme adopted in this chapter’s literature review, the method

is closest to the functional approach. A probabilistic framework (property 1) together

with the piece-wise linearisation of a standard network function (property 4) are used to

overcome the problem of generating a known relationship with the rule-base (property 2).

An expressive type of rule, which is not restricted to categorical variables (property 5),

then enables a small rule-base to classify most of the data (property 3).
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1.5 An overview of this thesis

Chapter 2 provides a summary of how feed-forward networks can be used for classifi-

cation in a probabilistic framework. Chapter 3 then describes how explanation can be

added within this framework, and how such an approach can be used to understand and

control the compromises inherent in explaining a feed-forward network classifier. This

chapter also introduces the expressive and general family of rules based on prototypes

which will be used later. Chapter 4 describes a technique for efficiently obtaining a piece-

wise linearisation of a very common network called a multi-layer perceptron (MLP). This

linearisation is the starting point for the sequence of methods, described in chapter 5,

which ultimately lead to the generation of a rule-base with the properties defined above.

The results of applying the complete procedure to three real datasets are given in chapter

6. Finally, chapter 7 contains a discussion and critique, and suggests some directions of

research which may lead to further improvement.



Chapter 2

Principled classification

This chapter provides an introduction to classification using feed-forward networks, the

purpose of which is to give the background to the concepts presented in later chapters. As

a consequence of this, the amount of detail given is inherently slightly uneven. A thorough

treatment can be found in many books, for example [Fuk90, Bis95, Rip96, Tar98].

In addition to providing background, this chapter also argues for the explicit decoupling

of a classification system into separate components. The effect of this decoupling is to

give each component an independent specification, thus eliminating or at least making

explicit the interactions which may be concealed within a more homogeneous framework.

This explicit decoupling also underpins the approach described in this thesis to producing

an explanation from a feed-forward network classifier.

2.1 Classification

Classification problems have the following generic properties. A set of measurements or

features are gathered on an object or event. These features are concatenated to form a

feature vector, and so if there are d features then this feature vector or pattern belongs to

an d dimensional input space. Objects or events are therefore represented by correspond-

ing patterns. Depending on the discriminatory quality of the features however, different

27



CHAPTER 2. PRINCIPLED CLASSIFICATION 28

objects may or may not be mapped into significantly different patterns. It is assumed that

each object or event can be assigned (by an expert) to a discrete class, although it is not

assumed that all experts will agree. This association between objects and classes is car-

ried through into an association between patterns and classes, and so classified objects are

represented by classified or labelled patterns.

The generic classification problem can now be stated as follows: replace or pre-emt the

expert by finding the best function to predict the class of an object or event from its

corresponding (unlabelled) pattern. This function is estimated from training data, which

is simply a set of expertly labelled patterns.

There are two primary factors which make the classification problem ill-posed. The first

factor is due to the non-invertible mapping from objects to patterns. Different objects

can map to the same or very similar patterns, implying that information is lost in the

encoding of objects as patterns. The second factor derives from the multivalent concept

of grouping objects into classes. Objects cannot always be unambiguously assigned to a

single class. Hence different experts, or the same expert at different times, may assign

different classes to the same object. How these primary factors relate to the ill-posed

nature of the classification problem is summarised in figure 2.1.

The effect of these factors is that many patterns are not associated with a single class. One

way to visualise the problem is to see all the training set patterns as coloured points in

input space, with colour used to indicate the expert labels. Those patterns with a definite

class will form clusters of points of the same colour. The effect of patterns belonging

to ambiguous classes will be to cause these regions to blur into each other, forming a

less uniformly coloured overlap. Fundamentally difficult problems are characterised by

considerable overlap; easy problems have well separated regions.

There is a third way in which the classification problem can be said to be ill-posed. The

classification function is estimated from a set of labelled patterns populating input space.

It is highly likely that new (test) patterns will be different from all those in the training

set, and so the classification function must be capable of interpolation from the training
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Figure 2.1: The classification problem of predicting a single class from a pattern is made

difficult both by the multivalent nature of assignment of objects to classes, and by the

information lost in mapping objects to patterns.

data. However the classification function should not necessarily reproduce the class label

of every training pattern because, as explained above, these labels are not necessarily

definitive; an expert re-labelling a pattern may not always decide on the same class. Note

that there are also other factors such as measurement noise and labelling errors which

increase class ambiguity.

In its most simple form, a classifier takes a pattern and returns a class. However there

are possibly two types of pattern which should not be assigned to any class. First, a test

pattern might be so different from all the training patterns that no reliable classification

can be given. There is not usually any reason to believe that the classification function can

extrapolate into regions of input space which are unpopulated by training data. Second,

a test pattern may not definitely belong to any single class. The reasons for this are the

same as the factors which make the problem ill-posed.

It may be argued that the first of these reasons not to classify is much more important than

the second. Whilst it may be acceptable to classify patterns arbitrarily when the model

indicates they do not clearly belong to any particular class, it is definitely not acceptable

to classify completely new patterns for which the model is invalid. Thus the approach
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used in this thesis is only to classify test patterns which are sufficiently similar to those

seen during training; all other patterns are flagged as novel by a novelty detector.

2.2 Using probabilities to classify

It should be clear from the previous description of the classification problem that proba-

bility and statistics provide the most appropriate framework within which to express the

uncertainty between objects, patterns and classes. This field is based on sound theoretical

concepts and has many powerful techniques which have been successfully applied across

a variety of problem domains. Neural networks should and can build on these techniques.

2.2.1 Classification

From a statistical point of view, the optimal classification is to assign the most proba-

ble class to an object. This will be referred to as Bayes classification, although strictly

speaking the Bayes classification is more general and includes both a loss function and

an expression of doubt [Rip96]. Before any information on a particular object is known,

the probability of that object belonging to class k is given by the prior probability P (k).

However, given the feature vector x representing an object, the probability of that object

belonging to class k is given by the posterior probability P (k jx). Suppose a classifier

d(x) 2 f1; : : : ;Kg is required to solve a K class problem, then the probability that d(x)

gives the correct class is

�(d;x) = P (d(x) jx) : (2.1)

The Bayes classifier d
B

maximises this probability1 , and can be defined according to:

d

B

(x) = argmax

k

P (k jx) (2.2)

1In the event of any ties this definition of the Bayes classification rule is not unique. However this is

generally unimportant and ties can be broken arbitrarily.
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The accuracy of a classifier d is equal to the expected probability of making the correct

classification,

�(d) =

Z

�(d;x)p(x)dx

=

Z

P (d(x) jx)p(x)dx; (2.3)

where p(x) is the unconditional probability density for pattern x. The Bayes classification

rule also optimises accuracy:

max

d

�(d) = �(d

B

): (2.4)

However the Bayes classifier is independent of the unconditional density distribution of

patterns because it assigns the most probable class to each pattern irrespective of the

probability of that pattern occurring. Hence as expressed by equation (2.2), the optimal

classification of individual patterns should be considered the defining property.

Accuracy is a useful measure which summarises one quality of a classifier. However it

is an average measure, and averaging can hide important effects. Consider a two-class

problem for which one class is relatively rare: let the prior probabilities of patterns from

each class occurring be P (1) = 0:9 and P (2) = 0:1. A classifier which assigns every

pattern to class 1 will have an accuracy of 0:9, but this mis-represents the quality of such

classifications. One possible solution is to quantify the per-class accuracy. The probability

of the classifier d making the correct classification of pattern x associated with an object

labelled as class k can be written

�

k

(d;x) = P (d(x) jx; k) : (2.5)

The class conditional accuracy is then defined to be the expected probability of making

the correct classification of objects labelled as belonging to class k.

�

k

(d) =

Z

P (d(x) jx; k)p(x j k)dx: (2.6)
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The class conditional accuracies of the example classifier given above will give a good

indication of the problem since �
1

(d) = 1:0 and �
2

(d) = 0:0.

The accuracy and class conditional accuracy of the Bayes classifier are maximal; they give

an upper bound for the performance of a classifier. This limit depends on the difficulty of

the problem, which is primarily a function of the amount of overlap between the classes

in input space.

Practical issues

Optimal classification can only be made if the posterior class probabilities are known. Un-

fortunately these probabilities are rarely available and most practical classifiers use, either

explicitly or implicitly, estimates of the posterior class probabilities. Neural networks are

no exception and can be used either to classify directly or to estimate the probabilities

from which a classification can be decided. It will be seen that the latter approach has

many advantages and is therefore adopted in this thesis. The estimated posterior probabil-

ities are written ^

P (k jx), and equation (2.2) is then used with these estimated probabilities

to make the classifier ^

d

B

(x).

The accuracy of an estimated Bayes classifier ^

d

B

(x) is unlikely to equal the accuracy of

the true Bayes classifier d
B

(x). Even with an estimate of the unconditional probability

density, p̂(x), it is unlikely that the corresponding versions of equations (2.3) and (2.6)

will have analytic solutions. Therefore in practice the integrals are replaced by a sum over

patterns which have been implicitly and independently sampled from p(x) and labelled

with samples from the posterior class distribution P (k jx). In other words, the integrals

are replaced by a sum over independent test patterns.

�(d) �

1

N

N

X

n=1

�(d; x

n

)

=

1

N

N

X

n=1

P (d(x

n

) jx

n

)

�

#“correct” classifications

N

= �̂(d): (2.7)
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Similarly,

�

k

(d) �

1

N

k

N

k

X

n=1

�

k

(d; x

n

k

)

=

1

N

k

N

k

X

n=1

P (d(x

n

k

) jx

n

k

; k)

�

#“correctly” classified patterns labelled class k

#class k patterns
= �̂

k

(d): (2.8)

Note that in both of these derivations there are two approximations, and that each of these

approximations is due to the substitution of an unbiased estimator2. Hence the expected

value of �̂(d) is �(d) and the expected value of �̂
k

(d) is �
k

(d).

2.2.2 Novelty detection

A Bayes classifier assigns a class to every pattern. However there are strong reasons for

not attempting to classify test patterns which are significantly different from those seen

previously. A novelty detector is a function which takes a pattern x and returns a verdict

of normal or novel; novel patterns should not be classified since by definition the system

has not seen a sufficient number of such patterns before. Note that there are alternative

uses for novelty detectors which will not be considered here. For example if one class

occurs extremely rarely, it might only be detected by dissimilarity from the class which

represents normality.

The relevant probability for novelty detection is the unconditional density function, p(x),

which models the distribution of patterns. One possible definition of normality is the

smallest region of input space which encloses all possible patterns from the distribution

p(x). However such a definition of normality is only satisfactory if the unconditional

distribution has tails which quickly reach zero. Most real-world distributions have tails

which only gradually decrease to zero, and this causes the region of normality as defined

above to include patterns which only rarely occur. This is a problem because the purpose

of the novelty detector is to filter out rare patterns.

2By definition, the expected value of an unbiased estimator is the true value.
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One possible solution is to define normality as the smallest region of input space which

encloses 100r% of patterns, where r is typically close to 1:0. Appendix C shows that

this is equivalent to the region of space for which p(x) is larger than a single threshold, t.

Thus novelty can be defined according to

p(x) < t � pattern x is novel (2.9)

where t typically has a very small value. Normality is simply the converse of novelty, and

so the set of normal patterns N may be defined

N = fx j p(x) > tg: (2.10)

Note that thresholding p(x) has commonly been used to differentiate novel from normal

patterns, [Sil96].

Practical issues

In practice, the true distribution p(x) is unknown and so an estimate p̂(x) is substituted

into equation (2.9). In addition, the threshold t cannot usually be found by analytical

means, but it may be estimated using order statistics [Ric95]. In short, N patterns are

sampled from p̂(x) and sorted into decreasing values of p̂(x). The expected value of the

(N � r)

th order statistic is an estimate of t, and the variance of this estimate decreases

with increasing N . See also [NCCR+97].

2.3 Using a network to estimate class probabilities

The previous two sections have shown how classification and novelty detection may be

decided from estimates of posterior class probabilities and unconditional densities. This

section provides a very brief summary of how feed-forward networks may be used to es-

timate class probabilities. Similar concepts also apply to estimating unconditional density



CHAPTER 2. PRINCIPLED CLASSIFICATION 35

but analogy will be sufficient and no details will be required (see [Sil96] for a thorough

introduction to density estimation). Note that only one approach to feed-forward network

based probability estimation is described here; there are several alternative methods which

are not mentioned.

Of the several different types of feed-forward network, the two most common are multi-

layer perceptrons (MLP) and radial basis function (RBF) networks. Both of these networks

can be used to estimate posterior probabilities, but it will be seen that there are good

reasons for preferring the MLP when implementing the approach to making “explained

classifications” described in this thesis.

Feed-forward networks are conveniently parameterised general purpose functions which

have many applications other than classification. Different applications have different

requirements and this has led to several variations in the form of the output of the network

function. It is clear that if a function is to estimate class probabilities, then the outputs

should always lie in the interval [0; 1℄. In addition, if the classes are mutually exclusive

then these outputs should also sum to unity. These two conditions are guaranteed by the so

called softmax output function. The equation for the class probability estimates provided

by a two layer3
MLP using a softmax output function is given below.
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where

sig(y

j

) =

1

1 + e

�y

j

: (2.12)

This may be visualised as the structure shown in figure 2.2. The matrix WIN and vector

3Only networks with two layers will be considered in this thesis. Many texts report that two layers are

sufficient, both in theory and in practice. See for example [Rip96, Bis95]
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Figure 2.2: The structure of a multi-layer perceptron (MLP) which takes a feature vector

x and estimates the class probabilities P (k jx).



IN are called the input weights and offsets4 respectively. These are used to form a linear

combination y
j

of the features x
k

. These y
j

form the inputs to a number of hidden nodes;

the output from hidden node j is a non-linear sigmoid function sig(�) of its input y
j

. The

output from all the hidden nodes are then linearly combined using the output weights and

output offsets, WOUT and OUT, to form the inputs z
i

to the output nodes. Finally, these z
i

are normalised using a softmax output function so that the outputs are in the [0; 1℄ interval

and sum to unity.

The input and output weights and offsets are the parameters of the network, and hence the

parameters of the posterior probability distribution. In other words, the underlying model

for the posterior probability distribution is the MLP function. Given an arbitrary number of

hidden nodes, this function can be shown to be a universal approximator [Jon90, BL91].

This suggests that MLP networks impose relatively few constraints, and in this sense can

be described as data-driven model-free estimators.

2.3.1 Maximum likelihood

The task of training a feed-forward network is as follows. Given a number of labelled

patterns, find the parameter values which result in the MLP providing the best estimate

4The offsets are sometimes referred to as bias weights.
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of the underlying posterior distribution P (k jx). This problem can be solved using the

statistical method of maximum likelihood [Ric95], which in this context seeks to maximise

the probability of observing the labels on the training data as a function of the network

parameters,

L =

Y

n

^

P (k

n

jx

n

); (2.13)

where kn is the class label of the nth training pattern xn. Since the logarithm function

is monotonically increasing, maximising this likelihood is equivalent to minimising the

following error function:

E = �

1

N

X

n

ln

^

P (k jx

n

): (2.14)

This is a non-linear optimisation problem in the parameters of the network, for which

there exist many possible algorithms [PTVF92]. Many of these algorithms require the

first derivatives of the error function to be calculated, and another advantage of many feed-

forward networks (including MLP’s) is the efficiency with which these first derivatives can

be computed. The standard derivations of these algorithms may be found in many standard

texts, for example [Bis95].

2.3.2 Overfitting, regularisation, and validation

An overfitting network is one which has captured details of the training data which are

not characteristic of the whole population; it is a consequence of an overly flexible model.

Hence a symptom of overfitting is a network which performs well on the training data but

considerably less well on new data.

The problem of overfitting can be reduced either by increasing the amount of training

data, or by limiting the complexity of the network function. The latter can be achieved

either by reducing the total number of network parameters or by constraining the freedom

of these parameters. The total number of parameters is a function of the number of input
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and hidden nodes, but note that reducing the number of input nodes involves reducing

the number of features in a pattern. The freedom of the parameters can be constrained or

regularised by adding a penalty term, 
, to the error function which becomes large when

the network function becomes complex. Hence training a regularised network involves

minimising the penalised error,

Epenalised = E +
: (2.15)

A typical penalty term is the average squared second derivatives of the parameterised

function [Hay99]. However when the function is a feed-forward network such penalty

terms are analytically intractable, and a popular and simple alternative is called weight

decay:
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where the �
i

may be all equal. Weight decay has a probabilistic interpretation of a param-

eterised (in �
i

) prior belief on the complexity of the function. These parameters therefore

allow the amount of regularisation to be controlled.

Testing for overfitting is equivalent to assessing whether the complexity of the network

function is justified by its performance on unseen data. This is called validation and is

based on randomly splitting the training data into a training set and a validation set. For

a given number of network parameters and amount of regularisation, the training set is

used to minimise the error function and the validation set to assess the performance. A set

of parameters which causes the training set to be overfitted will give a poor performance

on the validation set, and the complexity of the network function can then be reduced by

decreasing the number of network parameters and/or increasing the amount of regularisa-

tion.

Thus it can be seen that obtaining a final solution involves an optimisation within an

optimisation. Network complexity is optimised by maximising the performance on a
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validation set, but this optimisation is over a set of networks whose parameters have all

been optimised by minimising penalised error on a training set.

Note that using validation has not completely eliminated the problem of overfitting be-

cause the final network could be overfitting the validation set. Variations on the basic

validation scheme can reduce this possibility even further. For example, v-fold valida-

tion averages the results from v different training and validation sets. This also has the

advantage of making more efficient use of the data available for training.

Finally, validation sets are not independent because they have been used in the optimi-

sation process. This implies that the performance on validation sets is not necessarily

indicative of the performance on future unseen patterns. An independent test set is re-

quired to provide an unbiased estimate of how well the network will perform on new

patterns.

2.3.3 Pre-processing

Data pre-processing means applying a transformation to all patterns before they are passed

to the feed-forward network. This transformation can be used to encode problem domain

knowledge, but it is also often used simply to reduce the number of input dimensions.

This dimension reduction reduces the number of parameters in the network, which helps

to prevent the network function from overfitting the training data. However the disadvan-

tage is that any dimension reducing transformation is a type of projection, and projections

lose information. If useful information is lost then the overlap between classes will in-

crease, and this must necessarily decrease the accuracy of the class predictions. There is

therefore a potential trade-off between preventing overfitting and reducing the accuracy

of the network.

Pre-processing can also be given a regularisation interpretation, and this is particular-

ly clear if the pre-processing transformation is linear. The most common linear pre-

processing transformation is called principal component analysis (PCA), which projects

all patterns onto a linear subspace containing as much of the data’s variance as possi-
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ble [Bis95]. After the network has been trained on the projected data, the linear pre-

processing transformation can be incorporated into the MLP input weights and offsets.

This produces a new MLP which can be considered to have been trained with constrained

(i.e. regularised) parameters. More practically, composing the linear pre-processing trans-

formation with the input layer of the MLP has the advantage that the network will work

directly on (new) un-projected patterns.

Training data is often normalised to have zero mean and unit variance in order to avoid

problems with the non-linear optimisation algorithm used to train the feed-forward net-

work. This normalisation is also a linear transformation and so can be incorporated into

the input layer of an MLP after training. As above, this has the advantage that the network

will work directly on (new) unnormalised patterns.

2.3.4 Types of variables

There are primarily two types of variables which make up feature vectors. Variables such

as temperature and frequency are naturally ordered since it makes sense to say one value

is larger than another. In contrast, categorical variables have no such ordering. Examples

include eye colour (which might be a factor in predicting skin cancer), house location (a

factor in predicting insurance risk), occupation (for targeting mail shots), type of purchase

(for fraudulent use of credit cards), previous medical history etc.

Ordered variables are naturally encoded as a single number, but a different approach must

be used with categorical variables. Suppose that a single number was used to denote one of

three categories as 0, 1, or 2. This coding implies an ordering where none exists, and this

affects the network by requiring a more complex network function if, for example, the first

and third categories would ideally have very different estimated posterior probabilities

from the second category. Since complexity needs to be penalised to prevent overfitting,

a better solution would be obtained by re-ordering the codes for the first, second and

third categories as 0, 2, and 1 respectively. However the implied ordering effect can be

completely eliminated by using codes which are equally distant from each other.
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Encoding categorical variables

The most common method of encoding categorical variables for input into a feed-forward

network is called 1-of-n coding. For n categories, a vector of n components is used to

represent category i by a single 1:0 in the ith position, with all the remaining components

of the vector equal to 0:0. As required by the defining property of categorical variables,

this coding does not imply any ordering on the categories since all codes are the same

distance from each other.

However this scheme has the disadvantage that all the 1-of-n codes lie in the hyperplane,

1

T

x = 1. This hyperplane is an n � 1 dimensional sub-space, which indicates that

n � 1 dimensions are sufficient and probably necessary to encode n categories. Using n

dimensions increases the number of inputs to the network, which requires more weight

parameters. These extra parameters increase the complexity of the network, an effect

which should be avoided since one of the causes of overfitting is using too complex a

model.

In the statistical literature [VR97], 1-of-n coding with an additional code at the origin

(called contrasts) has been used to encode n+1 categories in just n dimensions5. However

the codes are then no longer equi-distant from each other.

The ideal solution requires that n codes of n� 1 dimensions should be the same distance

from each other. Appendix A shows that the columns of the following n� 1 by n matrix

have such a property.

T
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B

B
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(2.17)

5The motivation for using 1-of-n and a code at the origin comes from solving linear regression problems.

Using just 1-of-n encoding means that the linear regression cannot be solved using a matrix inversion because

the 1-of-n codes lie in an n� 1 dimensional sub-space.
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where

�

k

=

+

r

k � 1

2k

: (2.18)

To be precise, the Euclidean distance between any two columns is 1:0, the magnitude of

every column is �
n

, and the columns sum to zero.

The motivations to use this solution are as follows: it is simple to implement; it has

no disadvantages over 1-of-n encoding; and it may have some of the advantages given

above. Note that as with any pre-processing, possible advantages are only gained during

the training of the network. It may be convenient for the test patterns to use the more usual

1-of-n encoding, in which case a T matrix for each categorical variable can be applied to

the input of a network. Since the input to the network is via the matrix W, applying an

appropriate T matrix for each categorical variable simply produces a new input matrix.

This hides the fact that a 1-of-n encoding was not used during training from all interfacing

software which uses the trained network.

2.4 An explicitly decoupled framework

The previous sections have described the essential aspects of the classification problem

from a statistical perspective. This has led naturally to a system of four components: es-

timating unconditional density, detecting novelty, estimating posterior class probabilities,

and making a decision on class. Figure 2.3 shows how these components are used at

run-time to classify test patterns. Note that each of these components has a specification

which is independent or decoupled from the others.

However feed-forward networks are commonly used as classifiers in such a way that some

(or even all) of these components become merged. This has several disadvantages such

as reducing system flexibility and obscuring specifications. However the biggest disad-

vantage is the lack of posterior probability estimates which are so useful in understanding

the problem. The final two sections of this chapter justify the explicit decoupling of these
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Figure 2.3: An explicitly decoupled classification framework.

components. The problems caused by merging the estimation of the unconditional den-

sity p̂(x) with the estimation of the posterior class probability ^

P (kjx) are reviewed first,

followed by the problems caused by merging these probability estimates with the classifi-

cation/novelty decisions.

2.4.1 Justification for decoupling the probability estimates

In general, the class posterior probability P (k jx) and the unconditional density p(x) are

independent in the sense that knowledge of one does not necessarily imply knowledge

of the other. In terms of an individual pattern, knowledge of the unconditional density

for that pattern does not necessarily indicate the class to which it is most likely to be-

long. Similarly, knowledge that a particular pattern almost certainly belongs to class 1

does not necessarily indicate anything about the probability of that pattern occurring. Of

course, there is a relationship between P (k jx) and p(x) via the class conditional densities

p(x j k) and prior probabilities P (k),

P (k jx) =

p(x j k)P (k)

p(x)

;

p(x) =

X

i

p(x j k)P (k): (2.19)

However this only forms a single constraint because P (k jx) equals p(x j k)P (k) nor-

malised by p(x), and p(x) is just the sum of these p(x j k)P (k) terms. It is this normalisa-
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Figure 2.4: Illustration of the single constraint between p(x) and P (k jx).

tion which connects P (k jx) with p(x). Figure 2.4 demonstrates this single normalisation

constraint graphically.

Given the above relationship it can be argued that estimating the class conditional proba-

bility densities p(x j k) directly would have the advantage of only requiring a single prob-

ability estimator. Together with the prior probabilities P (k) which are usually estimated

with simple methods, such a model can be used to provide estimates of both P (k jx) and

p(x). However this approach does not often work well in practice simply because estimat-

ing density is so much harder than estimating class probability. Part of the reason for this

is that the class conditional densities p(x j k) are usually more complex than the posterior

class probabilities P (k jx), as shown in figure 2.5. Hence more flexibility is required by

an accurate density estimator than an accurate class probability estimator, and this flex-

ibility makes overfitting extremely likely. As usual, the strength of this effect increases

rapidly with increasing number of dimensions.

Overall, a system constructed from the solutions to the two decoupled problems (estimates

of P (k jx) and p(x)) is likely to perform better than the classifier constructed from the

solution to the single class conditional density problem (estimates of p(x j k)). With such

a strategy, the difficulties of density estimation are restricted to novelty detection rather

than being applied to both novelty detection and classification.
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Figure 2.5: One dimensional example showing how the posterior class probabilities can

be much simpler than the corresponding class conditional densities. Reproduced from

[Rip96] with kind permission from the author.

Unsupervised learning

Although there is no necessary connection between P (k jx) and p(x), so called unsu-

pervised learning based on cluster analysis effectively assumes the existence of a helpful

link. For example, the input layer of a RBF network is often trained using the training data

without using the class labels [Hay99]. In effect the input layer is chosen for uncondi-

tional density estimation. However the output layer is still optimised to estimate the class

probabilities. This has the advantage that large amounts of unlabelled data can be used to

train the input layer, but only a small number of labelled patterns are required to optimise

an output layer of relatively few parameters.

However this advantage is gained at the cost of assuming that the data is clustered in

such a way that the resulting input layer is helpful in the estimation of posterior class

probabilities6 . This is an assumption which may not hold: consider a simple example of

6One interpretation of the RBF network architecture is to consider the input layer as a pre-processing or

feature extraction layer, and the output layer as a single-layer network estimating posterior class probabilities

from these derived features.
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Figure 2.6: A one dimensional Gaussian centred at the origin. All patterns to the left of

the origin belong to class 1, and all patterns to the right belong to class 2.

data distributed as a single one dimensional Gaussian centred at the origin (figure 2.6).

Let all patterns to the left of the origin belong to class 1 and all patterns to the right belong

to class 2. The optimal unconditional density function is obviously a single Gaussian, and

this can be optimally implemented using an RBF network with only a single (Gaussian)

basis function. However the output from this basis function gives no information about

class membership, hence such a network would be useless for classification. In contrast,

any RBF network with two basis functions equi-distant from the origin can be used to

obtain perfect classification, but then the input layer only forms a very poor estimate

of the unconditional density distribution. Note that it is not intended for the above to

imply that an RBF network is an inferior classifier in comparison to other types of feed-

forward network; rather that interpreting the network as an estimator of both unconditional

density and posterior class probability may involve making certain assumptions about the

underlying distributions.

2.4.2 Justification for decoupling probabilities from decisions

In the statistical approach to classification, decisions are separated from probability esti-

mation: Bayes’ classification rule defines an optimal classification given the class proba-

bilities, and a single threshold defines an optimal novelty detector given the unconditional

density. However, these optimal decisions will only be optimal with respect to the chosen
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Figure 2.7: Illustration showing that despite satisfying an optimality criterion, a single

threshold may not be optimal for detecting novelty.

criterion. In other words a different criterion should sometimes be optimised. For exam-

ple, a single threshold may give rise to a poor novelty decision if one class has a much

larger prior probability and is localised in input space, and the other class has a small prior

probability with a more spread out distribution (see figure 2.7). A single threshold will

therefore incorrectly flag many more patterns from the second class as novel, [THCB95].

In terms of classification per se, the Bayes classification is always the optimal decision.

However, in the next chapter it will be seen that there are compelling reasons to make

sub-optimal (in terms of Bayes classification) classifications because only then may it be

possible to “explain” a reasonable number of classification decisions. The control of this

sub-optimality is only possible if estimation of the class probabilities has been decoupled

from the classification decision.

Finally, there is one more advantage in decoupling probability estimates from decisions:

the probability estimates may have uses other than deciding novelty or class. For example,

the unconditional density function can be used to fill in or impute missing values if some

patterns are incomplete; and the class probabilities can be used to indicate the certainty

of individual classifications and perhaps flag particularly ambiguous patterns (when the

posterior class probabilities are very similar).
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2.5 Summary

This chapter has described the statistical framework within which classification problems

can be solved using feed-forward networks. It was shown how the optimal classification

decision can be made from estimates of posterior probability, and how these estimates

may be obtained from the output of a suitably trained multi-layer perceptron. The need

for novelty detection was identified to avoid classifying data outside the boundaries of

the training data, and it was shown how novelty can be assessed using an estimate of the

unconditional probability density function. Thus the four basic components of a classifi-

cation system are: estimating the posterior class probabilities, deciding on a classification,

estimating the unconditional density, and deciding on novelty.

It was then explained why these four components should remain decoupled. Firstly, the

posterior probabilities and the unconditional probability density function need to be de-

coupled because they are not equally difficult to estimate and they are used for different

purposes. Secondly, although feed-forward networks may be used to classify without ex-

plicitly estimating probabilities, such a scheme suffers because these probability estimates

are so intrinsically useful in understanding and solving classification problems.



Chapter 3

Making explained classifications

It was shown in chapter 1 that there are important advantages in making explained classi-

fications. Chapter 2 described how a statistical approach could be used to provide an ex-

cellent framework within which to understand and build principled feed-forward network

classifiers. However no mention was made as to whether these classifiers can provide any

explanation. This chapter shows how explanation can be fitted into the statistical frame-

work, and how such an approach can be used to understand and control the compromises

inherent in making explained classifications. Note that this chapter does not describe the

methods which actually provide an explanation; these will be covered in chapters 4 and 5.

3.1 The form of an explanation

A classifier is a function of input space which returns a class. An explaining classifier

is a comprehensible function of input space which returns a class. Such a comprehensi-

ble function is parameterised in such a way that it is immediately and intuitively obvious

which regions of input space will be mapped to which classes. The type of explanation

considered in this thesis consists of a set of if-then rules called a rule-base. The con-

sequent of each rule is a class, and the conditional part of each rule, the antecedent, is

a simple description of a region of input space. If a test pattern is in the antecedent re-

49
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gion then it is classified as belonging to the consequent class. The rule is then said to be

activated by or cover the pattern.

Note that the use here of the word “explanation” is not intended to imply the formulation

of an argument or the hypothesis of any causation. Neither of these tasks are attempted in

this thesis and so “explanation” and “rule-base” should be taken as being synonymous.

Assume initially that input space consists only of ordered variables (no categorical vari-

ables). One possible antecedent region is a hyper-rectangle with sides parallel to the axes.

For a d-dimensional input pattern, a rule using such an antecedent may be written

if a
1

� x

1

� b

1

and : : : and a

d

� x

d

� b

d

then class k: (3.1)

This rule provides an explained classification because the classification criterion is ex-

plicit and the rule parameters (a
i

and b
i

) are comprehensible. Note that some of the rule

conditions can be omitted by setting the corresponding parameters to plus or minus infin-

ity. For example, the ith dimension (variable x
i

) can be effectively removed from the rule

by setting a
i

= �1 and b
i

=1.

Rules based on axis-aligned hyper-rectangles are an obvious form of explanation. How-

ever it will be seen later that they have a limiting property which becomes severe for

problems of more than a few dimensions. A more general form of rule is therefore de-

fined below which includes the axis-aligned rule as a special case.

3.1.1 Rules based on prototypes

Let a rule antecedent region be defined by a threshold on the distance from a prototype

pattern. Such a rule may be written

if D(x;�) � 1 then class k (3.2)

where D(x;�) is a metric which measures the proximity of the test pattern x to the

prototype pattern �. A simple way of interpreting such a rule is to state that pattern x
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belongs to class k because it is sufficiently close to a prototype pattern � belonging to

that class. Note that different rules may have different prototype patterns � and different

distance metrics D. Thus both the positions and the shapes of the antecedent regions are

different for different rules.

A convenient family of distance metrics are based upon the so called L-norms [Kre88] or

p-norms [TI97],

D

u;p

(x;�) =

 

X

i

�

�

�

�

x

i

� �

i

u

i

�

�

�

�

p

!

1=p

; (3.3)

where the u
i

weight the importance of each dimension. Of particular interest are the three

cases of p = 1, p = 2, and p = 1 because they correspond to intuitively understood

distances. The first metric, p = 1, is called a weighted city block or Manhatten distance

because it is the weighted sum of the distances along a rectilinear grid. The region defined

by D
u;1

(x;�) � 1 is a diamond shape centred at �, and figure 3.1 shows such a region in

two dimensions. However a two dimensional picture is potentially misleading because it

suggests a shape with the same number of corners and sides as a hyper-rectangle. This is

not the case since in d dimensions a hyper-rectangle has 2d corners and 2d sides, whereas

a hyper-diamond has only 2d corners but 2d sides.

The second metric, p = 2, is the weighted Euclidean distance. The region defined by

D

u;2

(x;�) � 1 is an axis-aligned hyper-ellipse centred at �. Figure 3.1 shows such a

region in two dimensions.

The third metric, p = 1, is an axis-aligned hyper-rectangle which is slightly more con-

strained than the one described by the antecedent of (3.1). To see this, consider the fol-
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Figure 3.1: Two dimension illustrations of the three types of rule antecedent formed from

the distance metric defined by equation (3.3)
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where
V

is the conjunction operator. Thus if �
i

and u
i

are chosen such that

a

i

= �

i

� u

i

b

i

= �

i

+ u

i

(3.5)

then the antecedent of (3.1) and equation (3.4) are equivalent. Figure 3.1 shows such a

region in two dimensions.

However it is not possible to find �

i

and u

i

such that only one of a
i

or b
i

is infinite.

This problem is a symptom of a more significant constraint: the position of the prototype

pattern must be midway between the extremes of the antecedent region. In other words,

the prototype must be at the centre of the region. To see the disadvantage of this constraint,

consider trying to use such rules to describe a region which is infinite in extent in one or

more directions (a common occurrence). The centre of the region is therefore not well

defined, so neither is the position of the prototype.

A distance function which uses different weighting coefficients depending on the sign of

(x

i

� �

i

) can be used to solve this problem. Hence the following family of functions can

be defined

D

u;v;p

(x;�) =
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i

U
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� �
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U
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i

)

�

�

�

�

�

i

� x

i

v

i

�

�

�

�

p

!

1=p

(3.6)
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where
U

(�) is the step function,

U

(t) =

8

>

>

<

>

>

:

0 if t < 0

1 if t � 0

: (3.7)

Note that this function does not define a distance metric because in general it lacks sym-

metry. In other words D
u;v;p

(�;x) = D

u;v;p

(x;�) if and only if u = v. Ambiguity

in the ordering of the arguments to D can be avoided by adhering to the order used in

equation (3.6).

The shape of the antecedent regions defined by rules based on D

p

for p = 1; 2;1 are

shown for two dimensions in figure 3.2. Note that the prototype is no longer constrained

to be at the centre of the antecedent region; ultimately this extra freedom will allow the

prototype to be placed in a more representative position.
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Figure 3.2: Two dimension illustration of the three types of rule antecedent formed from

the function defined by equation (3.6).
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3.1.2 A user friendly format

It is clear that equation (3.6) is too cumbersome to be presented to the user as part of a

rule. A much more user friendly format is required, and one such possibility is shown in

figure 3.3. For each particular rule the x
i

’s are replaced by the names of the variables and

the variables �
i

; u

i

; v

i

are replaced by their numerical value. The rule is read differently

depending on the value of p.

For the city-block rules (p = 1), the condition for rule activation may be written

X

i

U

(x

i

� �

i

)

x

i

� �

i

u

i

+

U

(�

i

� x

i

)

�

i

� x

i

v

i

� 1; (3.8)

which suggests an intuitive way of reading such a city-block rule. Observe that only one

of the two terms in the summation is non-zero, and that this term then contributes part

of the “distance” from the pattern relative to either u
i

or v
i

. Thus the rule is activated if

the sum of the contributions is less than unity. Although this is slightly cumbersome to

describe, it is simple and intuitive to use.

Euclidean rules (p = 2) have a similar condition for rule activation,

X

i

U

(x

i
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i

)

�

x

i
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i

u

i

�

2

+

U

(�

i

� x

i

)

�

�

i

� x

i

v

i

�

2

� 1; (3.9)

and so may be interpreted in much the same way as the city-block rule. However the

squaring makes it more difficult to mentally estimate the contributions from each term.
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The condition for activation of an axis-aligned rule is

^

i

(�

i

� u

i

) � x

i

� (�

i

+ v

i

) (3.10)

which is extremely easy to interpret because the conditions on the variables are indepen-

dent of each other. Note that the format of (3.1) is probably simpler and could be used

instead. However it is convenient to use the same generic format for all three types of

rule.

Finally note that the effect of infinite u
i

or v
i

is to place no constraint on x
i

when it is on

the appropriate side of the �
i

. Hence a sensible convention is to represent these infinities

by leaving the corresponding positions in the rule blank.

3.1.3 Some examples

Figure 3.4 shows three pedagogical city-block rules both graphically and in the user

friendly format of figure 3.3. The class 1 rule is shown in the top left corner. It has a

prototype at (0:3; 0:9) and is bounded on all four sides because all the u
i

and v
i

are finite.

For example, the point (0:25; 0:8) activates this rule because the two contributions sum to

less than unity,

0:25� 0:3

�0:25

+

0:8� 0:9

�0:2

= 0:7 � 1: (3.11)

The class 2 rule is shown in the middle and is unbounded in the positive x-direction

because u
1

=1. Note that this 1 is represented as a blank in the rule format. Similarly

the class 3 rule is unbounded in two directions.

Figures 3.5 and 3.6 shows the appearance of these rules if instead of being city-block they

are of the euclidean and axis-aligned type. The text for these rules is omitted because

it is identical to the text shown in figure 3.4. Obviously the interpretation of the text is

dependent on the rule type.
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y

x

0 1

0

1

1

2

3

Class 1 if

x -0.25 0.3 +0.1

y -0.2 0.9 +0.125

Class 2 if

x -0.25 0.5

y -0.2 0.5 +0.125

Class 3 if

x -0.25 0.7

y 0.1 +0.125

Figure 3.4: Three city-block rules shown both graphically and in the format of figure 3.3.
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y

x

0 1

0

1

1

2

3

Figure 3.5: The same rules as in figure 3.4 but of euclidean rather than city-block type.

y

x

0 1

0

1

1

2

3

Figure 3.6: The same rules as in figure 3.4 but of axis-aligned rather than city-block type.
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Class k if

x
0

: a

01

a

02

: : :

x
1

: a

11

a

12

: : :

...
...

x
d

: a

d1

a

d2

: : :

Figure 3.7: The generic format of a rule for categorical variables.

3.1.4 Incorporating categorical variables

Categorical variables require a rule antecedent which does not rely on an ordering of

values to describe a subset of input space. An expressive way of writing an all-categorical

rule is shown in figure 3.7. Variable x
i

contributes a
ij

when x
i

is equal to its jth category1,

and the rule is activated if the sum of the contributions is less than unity.

In fact this format arrises naturally from the prototype rules for ordered variables given

previously. To see this, consider encoding categorical variables using a scheme such as

the one described in section 2.3.4. The important property is that the categories of each

variable are encoded using a set of vectors in a space separate from the other variables.

Thus a prototype rule acting on these encodings may be re-written in the form of figure

3.7 simply by calculating the contribution made from each encoded category.

Obviously input spaces which consist of a mixture of ordered and categorical variables

require rules which consist of a combination of the formats shown in figures 3.3 and 3.7.

3.1.5 Intersecting rules

It is possible for the antecedent regions of different rules to intersect. This can be an

advantage when the intersecting rules indicate the same class since this allows each rule

antecedent to be larger and therefore cover more patterns. However intersecting rules

which indicate different classes give conflicting classifications for a common set of pat-

terns. There are two solutions to this problem: either avoid having conflicting rules in the

rule-base; or order the rules and assign every test pattern to the class given by the first ac-

1The categories are enumerated only so that they may be listed; clearly this ordering is arbitrary and

unimportant.
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tivated rule. One possible criterion used to order the rules is to position the most effective

rules first.

3.2 Explanation vs optimal classification

The previous chapter described how a Bayes classifier makes the optimal classification

decision using estimates of class probabilities. Clearly a Bayes classifier which uses a

feed-forward network to estimate these probabilities does not provide an explanation in

the form of the rules described above. In fact it does not provide an explanation of any

form because the criterion used to make each classification is implicitly encoded in the

weights and offsets of the network. More precisely, each pattern is classified individually

and there is no indication of which other patterns would also be assigned to the same class.

The reason for this non-explaining property of the Bayes classifier ^

d

B

(x) is straightfor-

ward. ^

d

B

(x) is made from two non-explaining components: the Bayes classification

decision, which is defined by an optimality criterion which uses the posterior probabili-

ties to assign the most likely class to each pattern; and the feed-forward network, which

is optimised to estimate these class probabilities. Neither of these two components has a

specification which involves explanation, and so the classifier formed from their combi-

nation does not optimise explanation.

There are two approaches to solving this problem: either insert the explanation at the

level of the class decision, or insert the explanation at the level of posterior probability

estimation. Examples of the latter include classification trees [BFOS84, Qui93] and the

rule extraction methods of [Bla93, GHM92] (see chapter 1), but models which estimate

both posterior probabilities and give explained classification are making an implicit com-

promise. The probability estimates of such models are effectively regularised by the need

to make explained classifications, and this regularisation may not be optimal. Conversely,

the need to estimate the posterior probabilities must have an affect on the quality of the

explained classifications, but this effect may be detrimental. In other words, combining

probability estimation with explanation has prevented their separate optimisation.
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This argument against merging posterior probability estimation with explanation suggests

that a better alternative may be to try to insert the explanation at the level of the class

decision. In other words, the aim is to explain the classifications made by a system which

is not influenced by the need to explain. This is the approach taken in this thesis because

it makes explicit the compromises which are only implicit within a combined model. This

enables the compromises to be better understood and balanced in an appropriate trade-off.

3.2.1 The fundamental problem of explanation

As justified above, an explaining classifier should ideally provide a transparent descrip-

tion of the classification given by the Bayes classifier ^

d

B

(x). The following argument

first shows why this ideal criterion is impossible to achieve, and then suggests two com-

promises which will enable a satisfactory criterion to be met.

Recall that the classifier ^

d

B

(x) divides input space into class regions separated by bound-

aries. Recall also that a rule assigns all patterns within its antecedent region to a single

class. Therefore if a rule is to make the same classifications as the Bayes classifier, then

the antecedent region of a class k rule must lie entirely within the class k region defined

by ^

d

B

(x). Figures 3.8, 3.9, 3.10 illustrate how a small number of each type of rule can

begin to describe the classification provided by ^

d

B

(x).

There is now an obvious problem: the incompatibility of shape between the rule an-

tecedents and the class boundaries implies that an infinite number of rules is required to

describe the Bayes classifier completely. An infinite number of rules does not form an

explanation; a dozen rules is probably a generous upper limit. This limit implies that

some patterns cannot be given an explained classification. The above examples were two

dimensional and had a simple classification boundary, which makes it possible for a small

rule-base to cover most of the patterns. However the fundamental problem of explanation

is that the number of rules required to explain a significant fraction of patterns increases

exponentially with the number of dimensions.
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y

x

0 1

0

1

Class 1 if

x -0.2592 0.7104

y 0.6629 +0.1805

Class 1 if

x -0.1189 0.3692

y 0.1986 +0.3286

Class 2 if

x 0.5260 +0.2537

y -0.1502 0.9052

Class 2 if

x 0.1491 +0.3360

y -0.6737 0.7704

Figure 3.8: Four city-block rules used to describe the estimated Bayes classification

boundary on an artificial dataset. These rules cover approximately 94% of the pattern-

s.
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y

x

0 1

0

1

Class 1 if

x -0.2750 0.7027

y 0.5888 +0.1789

Class 1 if

x -0.2811 0.6223

y 0.4418 +0.1422

Class 2 if

x 0.1286 +0.2488

y -0.3257 0.6514

Class 2 if

x 0.3855 +0.1605

y -0.2131 0.8722

Figure 3.9: Four euclidean rules used to describe the estimated Bayes classification

boundary on an artificial dataset. These rules cover approximately 82% of the pattern-

s.
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y

x

0 1

0

1

Class 1 if

x -0.0288 0.6210

y 0.7389 +0.0408

Class 1 if

x -0.1353 0.4977

y 0.2711 +0.2425

Class 2 if

x 0.2437 +0.0686

y -0.5006 0.8887

Class 2 if

x 0.4611 +0.0237

y -0.0182 0.7219

Figure 3.10: Four axis-aligned rules used to describe the estimated Bayes classification

boundary on an artificial dataset. These rules cover approximately 64% of the patterns.
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This important effect can be demonstrated by calculating the optimal fraction of space

covered by a single rule when it is used to describe different boundaries. The two most

analytically convenient and realistic boundaries are those formed from a hyperplane and

a hypersphere. Table 3.1 gives the formulae for the optimal fraction of space covered by a

rule of each type when describing a hyperplane boundary. Table 3.2 gives the same infor-

mation for a hypersphere boundary. See appendix D for the derivations of the formulae

in both of these tables. Figures 3.11 and 3.12 show how these fractions decrease with

increasing number of dimensions.
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City-block

Euclidean

Axis-aligned

Rule type Picture Fraction

1

(

�

4d

)

d=2

d!

(d=2)!

d!

d

d

Table 3.1: The fraction of hyperplane bounded space covered by each of the three types

of rule; d is the number of dimensions.

City-block

Euclidean

Axis-aligned

Rule type Picture Fraction

—

1

(d=2)!

(

�d

4

)

d=2

Table 3.2: The fraction of hypersphere bounded space covered by each of the three types

of rule; d is the number of dimensions. No closed form solution could be found for the

city block fraction.
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3020100

0

1 city−block

euclidean

axis−aligned

f

log(f)

d

3020100

0

−10

−20

−30

city−block

euclidean

axis−aligned

f

log(f)

d

f d = 2 d = 4 d = 10 d = 20

city-block 1 1 1 1

euclidean 0:78 0:46 0:090 0:0058

axis-aligned 0:5 0:093 3:6� 10

�4

2:3� 10

�8

Figure 3.11: Fraction of space f (as a function of dimension d) which each of the three

types of rules cover when pushed up against a hyperplane boundary.

One partial solution to this fundamental problem is to allow the rule antecedent regions to

cross the class boundary, in which case the rules make sub-optimal (with respect to ^

d

B

(x))

classifications. Figure 3.13 shows the effect of allowing axis-aligned rules to cross over

the classification boundary. Note that the percentage of patterns covered has increased

from 64% (in figure 3.10) to 85%. Thus relaxing the restriction that rules must make

the same classification as ^

d

B

(x) enables a rule-base to classify more patterns. Obviously

this relaxation must be carefully controlled if the rule-base is not to make improbable

classifications. On an intuitive level, allowing rules to be sub-optimal is only acceptable

if there is sufficient overlap between the patterns from each class. This important point

will be described more precisely in section 3.3.4.

There are therefore two ways in which an explaining classifier can be sub-optimal with

respect to the Bayes classifier ^

d

B

(x). First, the rule antecedent regions may cover only

part of input space, resulting in some patterns not being classified by the rule-base. Sec-

ond, the rule antecedent regions could be allowed to cross the class boundary, resulting
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3020100

0

1

city−block

euclidean

axis−aligned

f

log(f)

d

3020100

0

−10

−20

−30

city−block

euclidean

axis−aligned

f

log(f)

d

f d = 2 d = 4 d = 10 d = 20

city-block 0:90 0:62 0:11 0:0025

euclidean 1 1 1 1

axis-aligned 0:64 0:20 0:004 4:0 � 10

�6

Figure 3.12: Fraction of space f (as a function of dimension d) which each of the three

types of rules cover when pushed up against a spherical boundary.

in the rule-base assigning some patterns to classes different from those given by ^

d

B

(x).

Any practical explaining classifier must balance these sub-optimalities if it is to assign a

reasonable fraction of patterns to a reasonably probable class using only a small number

of rules.

3.2.2 Extending the decoupled framework

The decoupled framework described in section 2.4 can now be extended to incorporate a

component which makes explained classifications. The use of such an explanation com-

ponent to classify new patterns is shown by the run-time flow diagram of figure 3.14.

As a justification for placing the explaining classifier after the novelty detector, note that

the explaining classifier uses the complete posterior probability function to decide the

position of the rule antecedent regions. However the posterior probability estimate is only
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y

x

0 1

0

1

Class 1 if

x -0.0720 0.3712

y 0.3632 +0.1702

Class 1 if

x -0.0260 0.5871

y 0.6569 +0.1752

Class 2 if

x 0.3134 +0.0037

y -0.0151 0.2279

Class 2 if

x 0.5009 +0.0801

y -0.0795 0.7873

Figure 3.13: Four axis-aligned rules used to describe the estimated Bayes classification

boundary on an artificial dataset. Unlike figure 3.10, these rules make sub-optimal classi-

fications (they cross the boundary) and so cover more patterns – approximately 85%.
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Novelty Detector, Explaining classifier Bayes rule classifier,

x

p̂(x) > t rulebase(x) argmax

k

^

P (k jx)

11

kk

Figure 3.14: An explicitly decoupled explaining classification framework.

Training data

Training data

Generate

rulebase

Estimate

Estimate

p(x)

P (k jx)

p̂(x)

^

P (k jx)

Figure 3.15: A rule-base is generated from probability estimates, which are in turn esti-

mated from the training data.



CHAPTER 3. MAKING EXPLAINED CLASSIFICATIONS 72

valid for normal patterns, and so the explaining classifier is also only valid for normal

patterns. Hence the explaining classifier fits into the pipeline after the novelty detector.

To justify placing the explaining classifier before the Bayes classifier ^

d

B

(x), note that

if one cannot classify a pattern with explanation, then the best alternative is to classify

without explanation. It is therefore natural to use ^

d

B

(x) for those patterns not classified

by the rule-base. Hence the explaining classifier fits into the pipeline before the Bayes

classifier.

It is important to emphasize that the Bayes classifier and the explanation classifier use

probability estimates in quite different ways. The Bayes classifier uses the estimated class

posterior probabilities of a pattern to decide its most likely class. However it is clear that

an explaining classifier cannot do this because the class posterior probabilities are esti-

mated by the MLP, and a MLP is a “black box” producing numbers without explanation.

Hence the explaining classifier is generated from estimates of the class posterior proba-

bilities without reference to any of the patterns to be explained. In addition, to ensure

that the rules cover regions of space likely to be occupied by test patterns, the generation

of the rule-base also requires an estimate of the unconditional density. Thus figure 3.15

summarises the training-time flow at a similar level of detail to that shown in the run-time

flow given in figure 3.14

Recall that the purpose of a decoupled framework is to give a clean specification for the

optimisation of each component. In particular, optimising the class posterior probability

estimates is decoupled from the optimisation of the rule-base. Note that this does not

imply that the two are unconnected, but that the need to explain should not affect the

estimation of the posterior probabilities. A corollary of this principle is that even though

the rules within the explaining classifier are in terms of distances to prototypes, this does

not imply that the posterior probabilities should necessarily be estimated using prototype-

based networks such as radial basis function (RBF) networks, [Hay99]. As explained

in chapter 2, it will be assumed in this thesis that the class posterior probabilities are

estimated using a multi-layer perceptron (MLP). It will be seen later that this choice does

not in any way handicap the generation of prototype based rules.
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Finally, no attempt will be made to explain the novelty detector even though it is used on

every test pattern. This is reasonable since only a very small number of patterns are ordi-

narily flagged as novel; prolonged occurrence of “novel” patterns would either indicate a

change in the underlying density distribution or a poorly trained density model.

3.3 Measuring explanation

It is clearly important to be able to monitor the type and degree of sub-optimality of an

explaining classifier. This section defines a set of measures which indicate the closeness

of the explaining classifier ^

d

E

(x) to the Bayes classifier ^

d

B

(x).

3.3.1 Parsimony

It is obvious that a rule-base consisting of a large number of complex rules does not

constitute an explanation; both the number and complexity of the rules must be limited

for the rule-base to have any explanatory ability. Hence one of the desirable properties

of an explaining classifier is for it to be parsimonious (consists of only a small number

of simple rules). Parsimony is the only purely qualitative measure used to describe an

explaining classifier.

3.3.2 Effectiveness

One of the ways to make a rule-base more parsimonious is not to classify every pattern.

In contrast to this, the Bayes classifier always classifies every pattern. This difference can

be described by the effectiveness of an explaining classifier ^

d

E

(x), which is defined as the

probability that it makes a classification. If C is the set of all patterns which are classified

by ^

d

E

(x), then the effectiveness �( ^d
E

) can be written

�(

^

d

E

) = P (X 2 C)

=

Z

C

p(x)dx: (3.12)
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Clearly an explaining classifier with high effectiveness has a high probability of making

an explained classification. However it is also useful to know how effective the explaining

classifier is at classifying patterns from each class. Hence the conditional effectiveness is

defined as the probability of the explaining classifier assigning a pattern to any class given

that the pattern most probably belongs to class k.

�

k

(

^

d

E

) = P (X 2 C j

^

d

B

(X) = k)

=

Z

C

p(x j

^

d

B

(x) = k)dx (3.13)

Estimating effectiveness

In practice the underlying unconditional distribution p(x) is unknown. However there are

several ways of estimating effectiveness. The first possibility is to approximate p(x) by

p̂(x) in equations (3.12) and (3.13). Monte Carlo integration can be used if the subsequent

integrals cannot be evaluated analytically. This amounts to using the following formulae

on a sample from p̂(x):

�̂(

^

d

E

) =

#explained classifications

#patterns
; (3.14)

�̂

k

(

^

d

E

) =

#explained classifications which are optimally class-k

#classifications which are optimally class-k
: (3.15)

Another possibility is to use these formulae on a sample from p(x) rather than p̂(x).

Clearly the training or test data are such samples, but note that the expert class labels are

not used.

3.3.3 Comparative accuracy

Of the two ways in which an explaining classifier can be said to be sub-optimal, the first

(not classifying every pattern) is measured by effectiveness. The second (not assigning the

optimal class to every pattern) is partially measured by what will be known as comparative

accuracy.
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The comparative accuracy of an explaining classifier ^

d

E

(x) is defined as the probability

of ^

d

E

(x) making the same classification as the Bayes classifier ^

d

B

(x).

(

^

d

E

;

^

d

B

) = P (

^

d

E

(X) =

^

d

B

(X) jX 2 C)

=

Z

^

d

E

(x)=

^

d

B

(x)

p(x jx 2 C)dx: (3.16)

Thus a classifier with an effectiveness of 0:8 and a comparative accuracy of 0:5 fails to

classify 20% of all patterns, and half of those patterns which are classified will be assigned

to a class which is different from the Bayes classifier.

Comparative accuracy suffers from the same insensitivity to unbalanced class priors as

was shown previously to be a problem with accuracy (see section 2.2.1). For example, if

the Bayes classifier assigns 90% of all patterns in C to class 1 then an explaining classifier

can achieve a comparative accuracy of 0:9 by classifying all patterns (within C) as class

1. As before, the problem is solved by defining a conditional measure. The conditional

comparative accuracy of ^

d

E

(x) with respect to class k is the probability of ^

d

E

(x) = k

given that ^d
B

(x) = k.



k

(

^

d

E

;

^

d

B

) = P (

^

d

E

(X) = k j

^

d

B

(X) = k;X 2 C)

=

Z

^

d

E

(x)=k

p(x j

^

d

B

(x) = k;x 2 C)dx: (3.17)

Thus in the above example, the poor classification of class 2 patterns is flagged by 

1

=

1:0 and 
2

= 0:0.

Estimating comparative accuracy

As with effectiveness, the defining integrals for comparative accuracy are in terms of an

unknown probability density. However the following equations provide an estimate using
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a sample:

̂(

^

d

E

;

^

d

B

) =

#explained optimal classifications

#explained classifications
; (3.18)

̂

k

(

^

d

E

;

^

d

B

) =

#explained class-k classifications which are optimally class-k

#explained classifications which are optimally class k
: (3.19)

The sample can be generated in one of two ways: from the estimated probability distribu-

tion p̂(x); or from the assumed underlying distribution p(x). In the latter case the training

or test data may be used, but note that as before the expert class labels are not used.

3.3.4 Comparative safety

The previous two sections defined the two measures of (conditional) effectiveness and

(conditional) comparative accuracy. Both are necessary because neither alone would be

sensitive to the two ways in which an explaining classifier can be sub-optimal (not ex-

plaining every pattern and sub-optimally classifying some patterns). However this does

not imply that these two measures are sufficient to characterise an explaining classifier.

This section will first define a measure called comparative safety, and then explain how it

complements comparative accuracy and effectiveness.

Defining comparative safety

Consider first the ratio of the accuracy2 of the explaining classifier ^

d

E

(x) to the accuracy

of the Bayes classifier ^

d

B

(x). Note that the integrals are over the region of input space C

in which the explaining classifier is activated.

�

1

(

^

d

E

;

^

d

B

) =

R

C

P (

^

d

E

(x) jx)p(x jx 2 C)dx

R

C

P (

^

d

B

(x) jx)p(x jx 2 C)dx

: (3.20)

This measure has the disadvantage of not comparing the probability of the explained clas-

sification of a pattern with the probability of the Bayes classification of the same pattern.

2This use of accuracy refers to the standard definition given on page 31, and not the comparative safety

described above.
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This observation suggests the following alternative:

�

2

(

^

d

E

;

^

d

B

) =

Z

C

P (

^

d

E

(x) jx)

P (

^

d

B

(x) jx)

p(x jx 2 C)dx: (3.21)

However this is still an average measure and so will never indicate the safety of an indi-

vidual classification. Of primary interest is the class of an individual pattern, and so it is

unhelpful to use a weighting based on the unconditional probability density. Hence the fi-

nal modification removes the averaging effect by replacing the integral by a minimisation.

The comparative safety of a classifier ^

d

E

(x) is defined,

�(

^

d

E

;

^

d

B

) = min

x2C

P (

^

d

E

(x) jx)

P (

^

d

B

(x) jx)

; (3.22)

and thus can be described as a measure which indicates the severity of the worst sub-

optimal classification.

Estimating comparative safety

The definition of comparative safety involves the underlying posterior class probability

P (k jx). This is unknown and so the obvious solution is to replace it with the estimated

probability ^

P (k jx),

�̂(

^

d

E

;

^

d

B

) = min

x2C

^

P (

^

d

E

(x) jx)

^

P (

^

d

B

(x) jx)

: (3.23)

Thus �̂ is found by minimising a function over C. The solution to this minimisation

problem is a central part of this thesis, although the approach will be an indirect one. This

will become clearer, particularly in section 3.6 and in chapter 5.

Note that any method to find �̂ based upon a sample of patterns is completely inappropri-

ate. The reason for this is simple: comparative safety attempts to quantify the most sub-

optimal classification, and the point at which this occurs will never be found by chance

in a high dimensional space. This is in strong contrast to effectiveness and comparative

accuracy which are both essentially average measures.
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Estimated comparative safety �̂ has the property that it is always in [0; 1℄. This is because

the ratio of probabilities will always be greater than or equal to zero, and ^

d

B

(x) is always

the class estimated to be the most probable. For this reason, and because there is no

alternative, the rest of this thesis will work with the estimated comparative safety defined

by equation (3.23).

Comparative safety vs comparative accuracy

Comparative safety and comparative accuracy are similar measures which are neverthe-

less sensitive to different effects. Observe that a comparative accuracy of 1:0 means that

all explained classifications are optimal (in the sense that they are identical to those given

by the Bayes classifier). This implies that comparative safety also equals 1:0. The reverse

is also true: a comparative safety of 1:0 implies a comparative accuracy of 1:0. Howev-

er, a high comparative accuracy does not necessarily imply high comparative safety. In

fact a comparative accuracy only slightly below 1:0 can have a comparative safety of 0:0

since it only takes a single pattern to be assigned to a class with zero probability for the

comparative safety to drop to zero. Note that this is independent of the probability of that

pattern occurring, and is therefore an example of the importance of decoupling uncondi-

tional density from conditional class probability estimates in the model (see section 2.4

on page 42).

Conversely, a comparative safety close to but not equal to 1:0 does not necessarily imply

a high comparative accuracy. Consider the following degenerate two class problem for

which there is total overlap between the two classes. Suppose that P (1 jx) = P (1) =

0:55 and P (2 jx) = P (2) = 0:45, and that the explaining classifier assigns every pattern

to the second class. The comparative accuracy is therefore 0:0 but the comparative safety

is quite high at 0:45=0:55 � 0:82.

It is clear from the above two arguments that comparative safety and comparative accuracy

measure different effects. Both are therefore useful measures to describe an explaining

classifier.
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The principle difference between comparative safety and comparative accuracy is that the

latter is a function of the unconditional density but the former is not. However compara-

tive safety is also specifically sensitive to how improbable the sub-optimal classifications

are. Assigning a pattern x to class 2 when P (1 jx) = 0:55 is more acceptable than as-

signing a pattern to class 2 when P (1 jx) = 0:95. Preventing improbable classifications

is particularly important in safety critical applications for which it would be far safer to

give no classification at all rather than one which is extremely unlikely. In addition, user

confidence in such a system could be reduced considerably by the presence of obvious

mistakes.

The special case of two classes

Note that if there are only two classes then

^

P (

^

d

E

(x) jx)

^

P (

^

d

B

(x) jx)

=

8

>

<

>

:

1 if x is optimally classified by ^

d

E

1�

^

P (

^

d

B

(x) jx)

^

P (

^

d

B

(x) jx)

if x is suboptimally classified by ^

d

E

:

From this it follows that

�̂(

^

d

E

;

^

d

B

) = min

^

d

E

(x)6=

^

d

B

(x)

1�

^

P (

^

d

B

(x) jx)

^

P (

^

d

B

(x) jx)

: (3.24)

This implies that a two-class classifier with a comparative safety of r must optimally

classify the pattern x if

^

P (

^

d

B

(x) jx) >

1

1 + r

: (3.25)

However ^

P (

^

d

B

(x) jx) = max

k

^

P (k jx), so the explaining classifier must satisfy the con-

dition

^

P (k jx) >

1

1 + r

=) assign x to class k: (3.26)

Consider the following examples. For maximum comparative safety (r = 1:0), the
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classifier ^

d

E

must assign pattern x to class k if ^

P (k jx) > 0:5. In other words, with

the exception of arbitrary ties, the classifier ^

d

E

must make the Bayes classification and

^

d

E

(x) =

^

d

B

(x). Conversely for minimum comparative safety (r = 0:0), the classifier ^

d

E

is only required to assign pattern x to class k if ^

P (k jx) > 1:0. Since this condition never

occurs, such a classifier can make completely unconstrained classifications.

Intermediate values of r correspond to intermediate cases of sub-optimal classification.

As r is decreased from 1:0, the number of patterns which may be sub-optimally classified

increases. However these extra patterns are those which belong to decreasingly ambiguous

classes. To clarify this point, observe that a two class classifier with a comparative safety

of r can assign to either class when

max

h

^

P (1 jx);

^

P (2 jx)

i

�

1

1 + r

; (3.27)

but since ^

P (1 jx) +

^

P (2 jx) = 1 this is equivalent to

1�

1

1 + r

�

^

P (1 jx) �

1

1 + r

: (3.28)

This clearly demonstrates that decreasing comparative safety increases the width of a

dead-band, centred on the optimal classification boundary. Patterns within this dead-band

can be assigned to either class, and it is this freedom which may allow an explaining

classifier to be more parsimonious and effective whilst still making safe classifications.

Figure 3.16 illustrates the effect of an increasing dead-band in two dimensions.

3.3.5 Summary

The measures which will be used to describe an explaining classifier are summarised in

table 3.3: parsimony measures the comprehensibility of the explanation; effectiveness

measures the probability of being able to explain the classification; comparative accuracy

measures the probability that the explained classification will be the same as the optimal
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y

x

0 1

0

1

r class 2 definite either class class 1 definite

1:00

^

P (1 jx) < 0:5 0:5 �

^

P (1 jx) � 0:5

^

P (1 jx) > 0:5

0:67

^

P (1 jx) < 0:4 0:4 �

^

P (1 jx) � 0:6

^

P (1 jx) > 0:6

0:43

^

P (1 jx) < 0:3 0:3 �

^

P (1 jx) � 0:7

^

P (1 jx) > 0:7

0:25

^

P (1 jx) < 0:2 0:2 �

^

P (1 jx) � 0:8

^

P (1 jx) > 0:8

Figure 3.16: Illustration of the effect of an increasing dead-band for decreasing compar-

ative safety r. The graph shows contours of ^

P (1 jx) = (0:1; 0:2; : : : ; 0:9), and the table

shows how the region which may be assigned to either class (the dead-band) increase in

width as r is decreased. Patterns from class 1 are represented as crosses and patterns from

class 2 are represented as circles.



CHAPTER 3. MAKING EXPLAINED CLASSIFICATIONS 82

Bayes classification; and comparative safety measures the severity of the most sub-optimal

explained classification.

The accuracy (and conditional accuracy) of an explaining classifier is also of interest, but

unlike the measures above it is not normalised with respect to the optimal non-explaining

classification given by the Bayes classifier ^

d

B

(x). This normalisation is useful because

it is the sub-optimality (in the above sense) of the explaining classifier which needs to be

measured.

An alternative justification for not considering accuracy as a primary measure of explana-

tion is based on the observation that a low classification accuracy does not imply (and is

not implied by) a low quality of explanation. Problems with significant overlap between

the classes are fundamentally difficult to classify accurately, but this does not mean that

the class boundaries are difficult to describe with rules. Conversely, a problem which is

extremely difficult to explain because of awkward class boundaries can have an extremely

accurate Bayes classifier because the classes are well separated.

Note that parsimony is the only measure which has no formal definition, and that with the

exception of comparative safety, all the others are defined by integrals over input space.

3.4 The value of the explanation measures

The definition of a set of explanation measures makes the problems of explanation much

easier to describe. In particular it enables the compromises which are inherent within

an explaining classification system to be better quantified and understood. This leads

naturally to a specification.

3.4.1 The inherent compromises of explanation

The fundamental difficulty in explaining classifications is the fact that the class bound-

aries defined by the Bayes classifier are of a form which usually makes the class regions

difficult to describe with only a small number of rules. This constraint prevents the si-



C
H

A
P

T
E

R
3
.

M
A

K
IN

G
E

X
P

L
A

IN
E

D
C

L
A

S
S

IF
IC

A
T

IO
N

S
8
3

Measure Symbol Definition Integral

parsimony — — —

effectiveness �(

^

d

E

) P (X 2 C)

R

C

p(x)dx

conditional effectiveness �

k

(

^

d

E

) P (X 2 C j

^

d

B

(X) = k)

R

C

p(x j

^

d

B

(x) = k)dx

comparative accuracy (

^

d

E

;

^

d

B

) P (

^

d

E

(X) =

^

d

B

(X) jX 2 C)

R

^

d

E

(x)=

^

d

B

(x)

p(x jx 2 C)dx

conditional comparative accuracy 

k
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d

E

;

^

d

B

) P (
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(X) = k j

^

d
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(X) = k;X 2 C)

R
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d
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(x)=k

p(x j

^

d
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(x) = k;x 2 C)dx

comparative safety �(

^

d

E

;

^

d

B

) min

x2C

P (

^

d

E

(x) jx)

P (

^

d

B

(x) jx)

—

Table 3.3: The measures used to describe an explaining classifier which classifies all patterns x 2 C.
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multaneous maximisation of the measures. For example, high comparative safety and ef-

fectiveness can usually only be achieved with many rules, thus reducing parsimony; high

comparative safety and parsimony can usually only be achieved by reducing effectiveness;

and achieving high effectiveness and parsimony usually results in a reduced comparative

safety. Figure 3.17 demonstrates all three effects.

3.4.2 Specifying an explaining classifier

A simple approach to specifying an explaining classifier is to maximise all the measures.

Clearly these maximands need to be weighted since it will not in general be possible

simultaneously to achieve the optimal value for them all. The choice of this weighting will

depend on the application. For example, acceptable values of conditional effectiveness

are a function of the importance of explaining patterns from each class. However in many

classification problems it is of primary importance that all patterns are guaranteed to be

assigned to a class which is reasonably likely. This places a strong weighting on the

comparative safety, which in turn motivates the change of role of comparative safety from

a weighted measure to a constraint in the optimisation of an explaining classifier. Hence

in this thesis the problem of obtaining an explaining classifier will involve the weighted

maximisation of parsimony, effectiveness and comparative accuracy, constrained by a

pre-specified comparative safety.

3.5 Exploiting freedom in novel regions

Recall the modified run-time flow diagram of figure 3.14 and observe that the novelty

detector is a filter which prevents all novel patterns from reaching either classifier. One

consequence of this filtering is that the explaining classifier is free to output an arbitrary

class for all novel patterns. This freedom can be exploited to increase the parsimony of

the rule-base.
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Low Comparative Safety

y

x

0 1

0

1

Low Effectiveness

y

x

0 1

0

1

Low Parsimony

y

x

0 1

0

1

Figure 3.17: Three plots showing the difficulties in simultaneously achieving high parsi-

mony, high effectiveness, and high comparative safety. For example, the first plot shows

an attempt to achieve a high parsimony and effectiveness, at the expense of a low com-

parative safety. Axis-aligned rules are shown here (omitting the position of the prototypes

for clarity), but similar effects also occur with city-block and euclidean rules.
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It may be argued that this exploitation of freedom in regions of novelty is unacceptable

because it could lead to misleading explanations. There are two counter-arguments to this.

First, explaining classifiers which are more directly driven by data already make implicit

use of this property. The second and more important reply is as follows. Extremely few

training patterns are found in regions of novelty, so there is virtually no evidence to suggest

that one classification of a novel pattern is better than another. Figure 3.18 provides a two

dimensional example of this, showing a zoomed out view of the same data and optimal

Bayes boundary which has been used for many of the examples of this chapter. Observe

that the boundary curves round far away from the data. It is extremely likely that this

curve is an irrelevant artifact of the shaping of the boundary within the cluster of normal

data. There is no advantage in forcing rules to adhere to the correct side of this boundary

outside the region of normality. Indeed there is a definite disadvantage: the rules will be

less parsimonious due to an irrelevant constraint. For example, the single city-block rule

shown in the figure can be made more parsimonious by removing (replacing by 1) the

rule weighting u
0

= 4:192.

3.5.1 The Karnaugh map analogy

The freedom of class assignment in novel and dead-band regions is closely analogous to

the “don’t care” states in the Karnaugh maps used to simplify the boolean logic of digital

circuits [Kar53]. Karnaugh maps can be used to design digital circuits so that they satisfy

a given input/output function. However it is often the case that the output of the circuit

for some inputs is unspecified. Choosing convenient outputs for these “don’t care” inputs

makes it possible to use a simpler circuit than might otherwise have been achieved if these

outputs had been chosen arbitrarily.

Figure 3.19 shows a simple example of a Karnaugh map for three binary variables A,B

and C. The task is to design a digital circuit which implements the design constraints

of providing a 0 when all of A,B and C are 0 (written ABC = [000℄), and a 1 when

ABC 2 f[110℄; [011℄; [111℄; [101℄g. The 0 and 1’s are shown in the map, and the X’s

indicate those inputs which will never occur. The designer is free to choose different
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y

x

0 6

0

1

Class 1 if (city block)

x -0.3712 0.7282 +4.1920

y 0.4992 +0.3504

Figure 3.18: Illustration showing that the classification boundary is effectively arbitrary

when far away from normal data. Thus there is no advantage in constraining rules in

novelty, and this may be exploited in order to increase parsimony.
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0 X 1

X 1 1 1

X

00 01 11 10

1

0

AB

C

Figure 3.19: An example showing how a Karnaugh map may be used to simplify the

implementation of a digital circuit. See text for details.

values for each X so as to minimise the number of logic gates needed to implement the

circuit. In this example, if the X in the top right corner corresponding to ABC = [100℄

is chosen to be a 0 and the other two X’s chosen to be 1’s, then the function is simply

B + C and the circuit can be implemented with a single OR gate. If however all the

X’s are arbitrarily assigned to 0 then the simplest realisation of the function would be

A(B + C) + BC. This non-parsimonious realisation therefore requires four gates.

So the analogy between a Karnaugh map and an explaining classifier is as follows: with

the Karnaugh map, freedom to choose the output of the digital circuit for the “don’t care”

inputs enables the implementation of a more parsimonious circuit; with the explaining

classifier, freedom to choose the class of novel patterns and those patterns in the dead-

bands enables the implementation of a more parsimonious explanation.

3.6 Comparative safety regions

Section 3.3.4 defined and justified comparative safety as a measured quantity. However

the specification given in section 3.4.2 used comparative safety as a fundamental con-

straint in the optimisation of an explaining classifier. It is therefore advantageous to ex-

press the comparative safety concept as a set of comparative safety regions. A class-k

comparative safety-r region, written R
k

(r), is defined as the largest set of patterns which

can all be assigned to class k with a comparative safety greater than or equal to r. Com-

parative safety regions have the obvious property that any class k rule with an antecedent

region entirely within R
k

(r) must have a comparative safety greater than or equal to r.
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Thus the problem of obtaining an explanation becomes one of finding a parsimonious and

effective set of rules which lie completely within the appropriately classed comparative

safety regions. It will be seen in chapters 4 and 5 how to achieve this when the class

probabilities are estimated using a multi-layer perceptron.

From the above description, and the definition of (estimated) comparative safety given by

equation (3.23), the region R
k

(r) is the largest region satisfying

min

x2R

k

(r)

^

P (k jx)

^

P (

^

d

B

(x) jx)

= r: (3.29)

This is equivalent to the more direct and intuitive definition,

R

k

(r) =

(

x

�

�

�

�

�

^

P (k jx)

^

P (

^

d

B

(x) jx)

� r

)

: (3.30)

Note that the regions R
k

(r) for different classes k will necessarily intersect unless r =

1:0. It is these intersections which give the explaining classifier the freedom to be opti-

mised for parsimony in only those regions which can be assigned to a sub-optimal class

with comparative safety. In other words, the intersection between the safety regions cor-

respond to the dead-bands which were described in section 3.3.4.

It was justified in section 3.5 why a rule-base can assign any novel pattern to any class. It

is advantageous to include this idea into the working definition of each comparative safety

region, and so a more complete definition is actually given by

R

k

(r) =

�

N [N \

(

x

�

�

�

�

�

^

P (k jx)

^

P (

^

d

B

(x) jx)

� r

)

; (3.31)

where N is the set of all normal patterns. Note that with this modification, comparative

safety regions intersect in two different ways. The first type of intersection is in regions of

novelty (very low unconditional density), and the second type of intersection is in regions

of ambiguous class (no dominating class posterior probability). Both of these overlaps

can be used to increase the parsimony and effectiveness of the rule-base.
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3.7 Summary

This chapter began by defining an explanation as a small number of rules, each of which

describes a simple region of input space. Three types of simple regions were considered,

each based upon a different (asymmetric) distance to a prototype pattern.

It was then argued that the need for explanation should not be used to constrain the class

posterior probability estimates. Instead a decoupled approach was proposed: an expla-

nation should describe the optimal Bayes classification, where the Bayes classification is

based upon explanation-unbiased posterior probability estimates.

This decoupling allows the fundamental problem of explanation to be made explicit: it

is not generally possible to describe the Bayes classification using only a small number

of simple rules because the rule antecedent regions cannot be made to fit neatly against

the classification boundary. One partial solution given was to allow the rules to make

sub-optimal classifications. However it was pointed out that this sub-optimality must be

carefully controlled if the rule-base is to cover a reasonable number of patterns without

making improbable classifications. Hence a set of measures (parsimony, effectiveness,

comparative accuracy, and comparative safety) were defined to indicate the closeness be-

tween the Bayes classifier and the explaining classifier.

The explanation measures enable a more precise understanding of the issues involved in

obtaining explaining classifiers. Hence they were used to specify the ideal characteristics

of an explaining classifier. It was argued that the concept of comparative safety was

so fundamental to explaining classifiers that it should be used to form a constraint in

their optimisation. Thus the comparative safety measure was re-expressed as comparative

safety regions.

Finally, it was explained that rules need only be on the correct side of the Bayes clas-

sification boundary within the region of normality. This provides an additional freedom

which can be exploited to increase the parsimony of the rule-base. The definition of the

comparative safety regions were modified to incorporate this idea.



Chapter 4

Linearising an MLP

This chapter and the next together describe a method of extracting rules under the ex-

planation framework previously introduced. This division into two chapters reflects the

top level structure of the solution: first generate a piece-wise linearisation of the trained

multi-layer perceptron (MLP); then use this piece-wise linearisation to obtain rules. The

justification for this approach is that no method could be found which obtained satisfacto-

ry rules without using this intermediate linearisation step. Expressed simply, piece-wise

linearisation of the MLP enables an explicit description of the classification boundaries to

be obtained (with respect to a given comparative safety); rule extraction is made easier by

starting from this basis.

To maintain a modular structure, this chapter details the linearisation method in a com-

pletely self-contained manner.

4.1 Introduction

The piece-wise linearisation of a one dimensional function y = f(x) is obtained by par-

titioning an interval of x into segments and approximating the function by a straight line

within each segment. Similarly, multi-dimensional functions such as MLPs can be piece-

wise linearised by partitioning input space into cells and approximating the function by a

91
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jerrorj � h

2h

xx

mlp(x) mlp(x)

Figure 4.1: Piece-wise linearisation with error bounds can be interpreted as a piece-wise

linear bounds on the function.

linear equation within each cell. For this process to be useful it is necessary to be able to

compute the largest error caused by the linear approximation. In other words, the piece-

wise linearisation must be accompanied by bounds on the error. A useful interpretation of

a piece-wise linearisation with error bounds is a piece-wise linear bound on the function.

A one-dimensional illustration is shown in figure 4.1.

The solution for the piece-wise linearisation of a MLP given in this chapter will assume the

network has a single hidden layer and a single linear output. Recall that an MLP trained

for (multiple-class) classification has softmax outputs, so it might appear insufficient only

to consider the piece-wise linearisation of an MLP with a single linear output. However

this is not the case, although the justification will be postponed until chapter 5.

4.2 Specification

Let s be a vector of integers, called the cell coordinates, such that each s refers to a unique

cell, X
s

. The pattern x is said to be in cell s if and only if x 2 X
s

. Clearly the cells should

not intersect, and should cover all normal patterns, N . Hence

X

s

1

\ X

s

2

= ; if s
1

6= s

2

; (4.1)

[

s

X

s

� N : (4.2)

A multi-layer perceptron with a single hidden layer and a single linear output may be
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written

mlp(x) =

X

i

w

OUT
i

sig(y

i

) + 

OUT (4.3)

y =W

IN
x+ 

IN (4.4)

where the sigmoid function is defined

sig(y

i

) =

1

1 + exp(�y

i

)

: (4.5)

The linearisation of a cell s may then be written

mlp(x) = a

T

s

x+ b

s

+ e

s

(x)

je

s

(x)j � h

s

9

>

=

>

;

for all x 2 X
s

; (4.6)

which is equivalent to saying that for all x 2 X

s

the mlp function is bounded:

a

T

s

x+ b

s

� h

s

� mlp(x) � a

T

s

x+ b

s

+ h

s

: (4.7)

This can also be expressed more concisely using the notation,

mlp(x) 2 a

T

s

x+ b

s

+ [�h

s

; h

s

℄ for all x 2 X
s

: (4.8)

Hence the problem of piece-wise linearising the MLP is to obtain a set of cells X
s

which

satisfy (4.1) & (4.2), and a set of parameters a
s

, b
s

, h
s

which satisfy equation (4.8).

4.3 Solution

The key observation which enables the MLP to be linearised efficiently is that the sepa-

rate piece-wise linearisation of each sigmoid (one per hidden node) implies a piece-wise

linearisation of the whole MLP function.
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Figure 4.2: The piece-wise linearisation of a sigmoid function. For clarity only one of the

n segments used to linearise the sigmoid is shown.

4.3.1 Main derivation

To maintain the flow of the derivation, assume for the moment that a method to obtain a

piece-wise linearisation of a sigmoid function has been found. In other words assume that

it is known how to determine �
s

, �
s

, h
s

and Y
s

such that

sig(y) = �

s

y + �

s

+ �

s

(y)

j�

s

(y)j � h

s

9

>

=

>

;

for all y 2 [Y

s

; Y

s+1

℄; (4.9)

where the integer s indicates the segment being linearised. This linearisation is illustrated

in figure 4.2.

To keep track of the linearisation of each sigmoid the parameters needs to be indexed by

i, the hidden unit index:

sig(y

i

) = �

i;s

i

y

i

+ �

i;s

i

+ �

i;s

i

(y

i

)

j�

i;s

i

(y

i

)j � h

i;s

i

9

>

=

>

;

for all y
i

2 [Y

i;s

i

; Y

i;s

i

+1

℄: (4.10)
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Substituting equation (4.10) into (4.3) gives the following:
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X

i

w

OUT
i

[�

i;s

i

y

i

+ �

i;s

i

+ �

i;s

i

(y

i

)℄ + 

OUT

=

"

X

i

(w

OUT
i

�

i;s

i

)y

i

#

+

"

X

i

w

OUT
i

�

i;s

i

+ 

OUT

#

+

"

X

i

w

OUT
i

�

i;s

i

(y

i

)

#

= �

T

s

y + �

s

+ �

s

(y); (4.11)

where �
s

, �
s

, and �
s

(y) are defined

(�

s

)

i

= w

OUT
i

�

i;s

i

�

s

=

X

i

w

OUT
i

�

i;s

i

+ 

OUT

�

s

(y) =

X

i

w

OUT
i

�

i;s

i

(y

i

):

Using equation (4.4), this may be re-written,

mlp(x) = �

T

s

(W

IN
x+ 

IN
) + �

s

+ �

s

(y)

= (�

T

s

W

IN
)x+

�

�

T

s



IN
+ �

s

�

+ �

s

(y)

= a

T

s

x+ b

s

+ �

s

(y); (4.12)

where a
s

and b
s

are defined

a

s

= �

T

s

W

IN
;

b

s

= �

T

s



IN
+ �

s

;

thus giving an expression for the linearisation of the MLP within cell s. To obtain bounds
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on the error term �

s

(y), first define Y
s

by

y 2 Y

s

�

^

i

y

i

2 [Y

i;s

i

; Y

i;s

i

+1

℄ (4.13)

and then observe

max

y2Y

s

j�

s

(y)j = max

y2Y

s

�

�

�

�

�

X

i

w

OUT
i

�

i;s

i

(y

i

)

�

�

�

�

�

�

X

i

max

y

i

2[Y

i;s

i

;Y

i;s

i

+1

℄

�

�

w

OUT
i

�

i;s

i

(y

i

)

�

�

=

X

i

�

�

w

OUT
i

�

�

h

i;s

i

(4.14)

Hence for all y 2 Y
s

,

j�

s

(y)j � h

s

; where h
s

=

X

i

�

�

w

OUT
i

�

�

h

i;s

i

: (4.15)

Finally equation (4.4) allows the cell constraint to be transformed from y-space to x-

space. Define X
s

by

x 2 X

s

�W

IN
x+ 

IN
2 Y

s

: (4.16)

Observe that because the Y
s

’s are mutually exclusive, it follows from this definition that

the X
s

’s are also mutually exclusive.

4.3.2 Summary of main derivation

The linearisation method is summarised in table 4.1. Note that the more compact notation

of equation (4.8) has been used to avoid the need for the error terms e
s

(x), �
i;s

i

(y

i

) and

�

s

(y). It is very clear from this summary that the key equation is the piece-wise lineari-

sation of the sigmoid function. This equation ultimately determines the linear coefficients

a

s

& b

s

, the bounds h
s

, the cells X
s

, and the cell coordinate system s.
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if

mlp(x) =

X

i

w

OUT
i

sig(y

i

) + 

OUT

y =W

IN
x+ 

IN

then

mlp(x) 2 a

T

s

x+ b

s

+ [�h

s

; h

s

℄ for all x 2 X
s

where

a

T

s

= �

T

s

W

IN

b

s

= �

T

s



IN
+ �

s

h

s

=

X

i

�

�

w

OUT
i

�

�

h

i;s

i

(�

s

)

i

= w

OUT
i

�

i;s

i

�

s

=

X

i

w

OUT
i

�

i;s

i

+ 

OUT

sig(y

i

) 2 �

i;s

i

y + �

i;s

i

+ [�h

i;s

i

; h

i;s

i

℄ for all y
i

2 [Y

i;s

i

; Y

i;s

i

+1

℄

y 2 Y

s

�

^

i

y

i

2 [Y

i;s

i

; Y

i;s

i

+1

℄

x 2 X

s

�W

IN
x+ 

IN
2 Y

s

Variable Description

i Integer indexing a hidden unit or its sigmoid.

s Vector of segment indexes denoting a cell.

a

s

Linear coefficients of MLP approximation in cell s.

b

s

Linear offset of MLP approximation in cell s.

h

s

Error bound of MLP approximation in cell s.

�

i;s

i

Line slope for sigmoid i in segment s
i

.

�

i;s

i

Line offset for sigmoid i in segment s
i

.

h

i;s

i

Error bound for sigmoid i in segment s
i

.

[Y

i;s

i

; Y

i;s

i

+1

℄ Linearisation interval for sigmoid i in segment s
i

.

Y

s

Set of points defining cell s in y-space.

X

s

Set of points defining cell s in x-space.

Table 4.1: Obtaining piece-wise linear bounds of an MLP from the piece-wise linear

bounds of each sigmoid.
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4.3.3 Some preliminaries to sigmoid linearisation

The piece-wise linearisation of the MLP should cover the whole of normal space with

a linearisation error less than some maximum specified amount. From this specification,

the maximum linearisation error and linearisation interval of each sigmoid can be derived.

The calculation of each is explained below.

Using cells efficiently : : :

A natural definition of MLP-linearisation error is the largest error bound h
s

, evaluated over

all cells:

h = max

s

h

s

: (4.17)

It is intuitively obvious that equalising all the h
s

’s will make the most efficient use of cells.

Note (table 4.1) that each error bound h
s

is the weighted sum of an error bound h
i;s

i

from

each sigmoid i,

h

s

=

X

i

jw

OUT
i

jh

i;s

i

: (4.18)

Hence the h
s

’s can be made equal by making the contributions from the linearisation of

each sigmoid all equal and independent of the cell coordinate s
i

. In other words,

h

i;s

i

=

h

jw

OUT
i

j

for all s
i

: (4.19)

Hence if the linearisation error is required to be no more than a given value H , then the

optimal solution will be made from the smallest number of cells which satisfy

h

i;s

i

� H

i

for all s
i

(4.20)
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where H
i

is the maximum linearisation error for each sigmoid,

H

i

=

H

jw

OUT
i

j

: (4.21)

: : : to cover all of normal space

The interval over which each sigmoid is linearised must be such that the resulting MLP-

linearisation covers the whole of normality, N . Observe that the input to the ith sigmoid,

y

i

, is proportional to the distance from a hyperplane defined by the ith row ofWIN, written

(w

IN
i

)

T , and the ith element of IN, written IN
i

:

y

i

= (w

IN
i

)

T

x+ 

IN
i

: (4.22)

Hence the interval over which it is necessary for the ith sigmoid to be linearised can be

expressed

y

i

2

�

min

x2N

(w

IN
i

)

T

x+ 

IN
i

; max

x2N

(w

IN
i

)

T

x+ 

IN
i

�

: (4.23)

Recall (section 2.2.2) that normality is defined in terms of a threshold on the estimated

unconditional density function, p̂(x). This function is often complex, which makes the

interval of equation (4.23) difficult to compute. A simple and sufficient alternative is to

linearise over a superset of normality, N
2

� N , where this superset is an axis-aligned

hyper-rectangle in input space,

N

2

=

8

<

:

x

�

�

�

�

�

�

^

j

p

j

� x

j

� q

j

9

=

;

: (4.24)

The parameters p
j

; q

j

of this superset are easy to find by considering the marginal distri-

butions of x.



CHAPTER 4. LINEARISING AN MLP 100

Thus a sufficient linearisation interval for the ith sigmoid may be written

y

i

2

�

min

x2N

2

(w

IN
i

)

T

x+ 

IN
i

; max

x2N

2

(w

IN
i

)

T

x+ 

IN
i

�

: (4.25)

The advantage of this form is that the maximisation and minimisation are trivial to com-

pute because the N
2

constraint allows each x
i

to be optimised independently. Hence the

interval can be expressed as y
i

2 [min
i

;max
i

℄ where min
i

and max
i

are defined

min
i

=

X

j

M((w

IN
i

)

j

; p

j

; q

j

) + 

IN
i

max
i

=

X

j

M((w

IN
i

)

j

; q

j

; p

j

) + 

IN
i

(4.26)

and where the function M is defined

M(; a; b) =

8

>

<

>

:

a if  � 0

b if  < 0

: (4.27)

4.3.4 Sigmoid linearisation

This section describes a method of generating a piece-wise linearisation of a sigmoid

function within a specified interval to within a specified linearisation error. Many alterna-

tive methods were considered, often consisting of minor variations which had a significant

effect on performance. Hence in order to make the work in this thesis reproducible it is

important to describe the algorithm in some detail. It was decided that a description using

pseudo-code would achieve the greatest clarity.

The first two sections below summarise the notation and give the complete pseudo-code.

The next 5 sections give a bottom-up explanation of the algorithm followed by a summary

of the algorithm structure. Finally the last two sections present an assessment of the

method and also discuss an important property.
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Notation

The input to the algorithm consists of the linearisation interval [min
i

;max
i

℄ and the maxi-

mum linearisation error H
i

. These would be calculated using equations (4.26) and (4.21).

The output from the algorithm is the piece-wise linearisation described by the set of vec-

tors fY
i

;�

i

;�

i

;h

i

g. This set consists of the segment intervals Y
i

, the line coefficients

�

i

;�

i

, and the linearisation error achieved, h
i

. These variables will satisfy the following

property for all segments s

i

:

sig(y

i

) 2 �

i;s

i

y + �

i;s

i

+ [�h

i;s

i

; h

i;s

i

℄ for all y 2 [Y

i;s

i

; Y

i;s

i

+1

℄: (4.28)

For clarity, explicit reference to each sigmoid (using the index i) will now be dropped.

Pseudo-code for the complete algorithm

function linearise1(min;max;H)

// Linearise sigmoid over interval [min;max℄ with an error bound less than H .

// Assume min < max.

if (min � 0)

fY;�;�;hg = linearise2(min;max;H)

else if (max � 0)

fY;�;�;hg = rotate (linearise2(�max;�min;H))

else if (min < 0 and max > 0)

fY;�;�;hg = merge(rotate(linearise2(0;�min;H));

linearise2(0;max;H))

return fY;�;�;hg

function rotate(fY;�;�;hg)

// Rotate a piece-wise linearisation about (0; 0:5).

// Assume Y
0

� 0.

Y = reverse(Y) // reverse reverses the order of the elements.

� = reverse(�)

� = reverse(�)

h = reverse(h)
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Y = �Y

for s = 1 to n

�

s

= 1� �

s

return fY;�;�;hg

function merge(fY

1

;�

1

;�

1

;h

1

g; fY

2

;�

2

;�

2

;h

2

g)

// Merge two piece-wise linearisations which are assumed to join at (0; 0:5).

�

T

= (�

T

1

�

T

2

)

�

T

= (�

T

1

�

T

2

)

h

T

= (h

T

1

h

T

2

)

// The last element ofY
1

and the first element ofY
2

are both 0; only keep one of them.

Y

T

= (Y

T

1

tail(Y

T

2

)) // tail discards the first element of a vector.

return fY;�;�;hg

function linearise2(min;max;H)

// Linearise a sigmoid over the interval [min;max℄ with an error bound less than H .

// Assume 0 � min < max.

n = 0

do

increment n

fY;�;�;hg = linearise3(min;max; n)

while (max

i

h

i

> H)

return fY;�;�;hg

function linearise3(min;max; n)

// Linearise a sigmoid over the interval [min;max℄ using n segments.

// Assume 0 � min < max.

// ******** local variables ********

vector �, �

vector h

vector Y

constant tolerane = 1� 10

�6
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// ******** local functions ********

function initialise()

// Initialise segment spacings Y with sensible (but sub-optimal) values.

Y

0

= min

Y

n+1

= max

for i = 1 to n

Y

i

= sig((sig

�1

(max)� sig

�1

(min))�

i

n+1

)

// Optimise �,�, and h for these spacings.

for s = 1 to n

optimiseSegment(s)

return

function balane(s)

// Use a binary search on Y

s

to equalise the error bounds h
s

and h

s+1

.

left = Y

s

right = Y

s+2

while (jh
s

� h

s+1

j > tolerane�min

s

h

s

)

if (h
s+1

> h

s

)

left = Y

s+1

else

right = Y

s+1

Y

s+1

= (left + right)=2

optimiseSegment(s)

optimiseSegment(s+ 1)

return

function optimiseSegment(s)

// Compute optimal �
s

, �
s

and h

s

for segment [Y
s

; Y

s+1

℄.

if (Y
s

> 0)

if (Y
s

> 10)

�

s

= 0

�

s

= (sig(Y

s

) + sig(Y

s+1

))=2

h

s

= �

s

� sig(Y

s

)

else

�

s

= (sig(Y

s+1

)� sig(Y

s

))=(Y

s+1

� Y

s

)

t = sig

�1

((1 +

p

1� 4�

s

)=2)

�

s

= (sig(Y

s

) + sig(t)� �

s

(Y

s

+ t))=2

h

s

= �

s

Y

s

+ �

s

� sig(Y

s

)

else

// Y
s

== 0

t = 0

for i = 1 to 20

�

s

= (sig(Y

s+1

+ sig(t)� 1)=(Y

s+1

+ t)
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t = sig

�1

((1 +

p

1� 4�

s

)=2)

�

s

= 0:5

h

s

= sig(t)� �

s

t� �

s

return

// ******** main loop ********

initialise()

do

s = argmax

s

jh

s

� h

s+1

j

di�erene = jh

s

� h

s+1

j

balane(s)

while (di�erene > tolerane�min

s

h

s

)

return fY;�;�;hg

The core function, optimiseSegment

The most basic unit of the algorithm is a function which computes the line which optimally

approximates the sigmoid within a single segment. This function is called optimiseSegment(s)

where s indicates the segment to be linearised. The callees of this function will ensure

that Y
s

� 0. The two cases Y
s

> 0 and Y
s

= 0 will be considered separately.

Assume first that the interval is strictly positive, Y
s

> 0. The optimal configuration

for a line which minimises the maximum linearisation error is shown in figure 4.3. By

considering the error at the end points Y
s

and Y
s+1

,

h

s

= �

s

Y

s

+ �

s

� sig(Y

s

); (4.29)

h

s

= �

s

Y

s+1

+ �

s

� sig(Y

s+1

): (4.30)

Subtracting one equation from the other gives an expression for the slope,

�

s

=

sig(Y

s+1

)� sig(Y

s

)

Y

s+1

� Y

s

: (4.31)
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0.5

Y

s

Y

s+1

t

h

s

h

s

h

s

Figure 4.3: Optimal configuration for minimising the maximum difference between a line

and sigmoid when Y
s

> 0.

The maximum linearisation error over the segment occurs at the turning point t, defined

by

�

�t

(�

s

t+ �

s

� sig(t)) = 0; (4.32)

which can be solved to give

t = sig

�1

�

1 +

p

1� 4�

s

2

�

: (4.33)

The condition for the magnitude of the error to equal h
s

at this turning point is

�h

s

= �

s

+ �

s

� sig(t); (4.34)

which when added to equation (4.29) gives the following expression for �
s

:

�

s

=

sig(Y

s

) + sig(t)� �

s

(Y

s

+ t)

2

: (4.35)

Finally, substitution back into equation (4.29) can be used to determine h
s

, thus complet-

ing the calculation of the optimum single line segment. The whole calculation is well

conditioned so long as the slope �
s

is not too small, in which case the calculation of the
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turning point t becomes extremely sensitive to round-off error. This is most easily seen

by considering the absolute condition number,

� =

�

�

�

�

�t

��

s

�

�

�

�

=

1

�

s

p

1� 4�

s

; (4.36)

from which it can be seen that determining t is very sensitive to changes in �
s

when �
s

is

small.

Equation 4.31 indicates that the problem of small � occurs when sig(Y

s

) and sig(Y

s+1

)

are both saturated to unity, and this occurs when Y

s

is large. Hence the problem can be

avoided by defining �
s

to equal zero for sufficiently large Y
s

. This implies that the turning

point of error no longer exists, and so the equations become

�

s

= 0

�

s

=

sig(Y

s

) + sig(Y

s+1

)

2

h

s

= �

s

� sig(Y

s

): (4.37)

Since sig(10) = 0:9999546, sufficiently large Y
s

can be taken to mean Y
s

> 10.

Now consider the case when the interval begins at the origin, Y
s

= 0. It is convenient to

impose the constraint that the linearisation of a sigmoid intersects the centre of rotational

symmetry of the sigmoid, (0; 0:5). Hence when Y
s

= 0 the configuration shown in figure

4.3 is replaced by the configuration shown in figure 4.4. The relevant equations are

�

s

=

sig(Y

s+1

) + h

s

� 0:5

Y

s+1

�

s

= 0:5

t = sig

�1

�

1 +

p

1� 4�

s

2

�

�h

s

= �

s

t+ �

s

� sig(t); (4.38)

but unfortunately these do not have a closed-form solution. However it is straightforward
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0.5

Y

0

= 0

Y

1

t

h

s

h

s

Figure 4.4: Optimal configuration for minimising the maximum difference between a line

and a sigmoid when the line is required to pass through the point (0; 0:5).

to derive the following numerical solution: initialise t to 0, and iteratively evaluate

�

s

=

sig(Y

s+1

) + sig(t)� 1

Y

s+1

+ t

;

t = sig

�1

�

1 +

p

1� 4�

s

2

�

: (4.39)

In practice this scheme always converges within a dozen or so iterations.

The function linearise3

Optimal segment spacing is achieved when all the segments have the same linearisa-

tion error. The approach taken here is to find the two adjacent segments, [Y
s

; Y

s+1

℄ and

[Y

s+1

; Y

s+2

℄, which have the largest difference in linearisation error, max

s

jh

s

� h

s+1

j,

and to use a binary search to find the mid-point, Y
s

, which equalises h
s

and h

s+1

. The

function which implements this binary search is called balance(s).

Before the binary search can be called for the first time, the segment spacings need to be

initialised. This is achieved by the function initialise which positions the segments

such that sig(Y
s

) are equi-spaced over s.



CHAPTER 4. LINEARISING AN MLP 108

The function linearise3 is the only caller of the functions initialise, balance,

and optimiseSegment. It takes as arguments the interval over which the sigmoid is

to be linearised, [min;max℄, and the number of segments to be used, n. Note that because

optimiseSegmentonly works on intervals which are entirely positive, linearise3

assumes min � 0.

The function linearise2

The key to understanding the function linearise2 is to compare its arguments with

the arguments of the function linearise3. The former takes an interval to be lin-

earised and a maximum error bound, whereas the latter takes an interval to be linearised

and the number of segments to be used. Translating maximum error to the minimum

number of segments is the sole purpose of linearise2. The function works by call-

ing linearise3with an increasing number of segments until the resulting linearisation

error becomes less than the specified amount.

Note that the linearisation interval is still assumed to be entirely positive.

The function linearise1

Finally the function linearise1 removes the constraint that the linearisation interval

must be entirely positive. There are three distinct cases: the linearisation interval is en-

tirely positive (min � 0); the linearisation interval is entirely negative (max � 0); and the

linearisation interval straddles the origin (min < 0 and max > 0). Two functions are used

to enable all three cases to be solved by routines which require min � 0. The first of these

is called rotatewhich rotates a linearisation about the point of rotational symmetry of a

sigmoid function, (0; 0:5). The second is called mergewhich merges a linearisation over

an interval from some negative value to zero with a linearisation over an interval from

zero to some positive value.
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linearise1

linearise2

linearise3

merge

rotate

initialise

balane

optimiseSegment

Figure 4.5: Structure of the piece-wise linearisation algorithm.

The structure of the algorithm

It is now possible to summarise the structure of the algorithm. Figure 4.5 shows the graph

of important function calls used by the complete algorithm: linearise1 uses merge

and rotate to break the problem down to the min � 0 case handled by linearise2;

linearise2 converts from maximum permitted linearisation error to the number of seg-

ments case handled by linearise3; linearise3 initialises the segment spacing with

initialise and then uses balane to balance up the linearisation errors in adjacent

segments. Both initialise and balane call optimiseSegment to find the optimal

straight line fit to the sigmoid within a single segment.

Assessment

Figure 4.6 shows the result of a linearisation over the interval [�20; 10℄ with a specified

maximum linearisation error of 0:05. Note that the smallest number of segments needed

to meet this specification produce errors which are smaller than 0:05. Note also that the

error for those segments to the left of y = 0 is different from those to the right. This is a

result of merging two independent linearisations, one for each side of y = 0.
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It is also interesting to see how accurately a sigmoid can be approximated by a piece-wise

linearisation. Figure 4.7 shows how the linearisation error decreases as the number of

segments used to linearise the interval [0; 10℄ is increased. Note that there is a diminishing

return from using more segments. This clearly has an affect on the choice of maximum

linearisation error for each sigmoid, equation (4.21). In particular, specifying a very small

value of overall linearisation error H may result in a very large number of cells. This is

a computationally undesirable and unavoidable problem with the piece-wise linearisation

method. Depending on the functional complexity of the MLP, some compromise between

linearisation error and number of cells may be required.

The continuous property

Observe that the linearisation of figure 4.6 has the property that the lines from each seg-

ment connect to form a continuous approximation to the sigmoid. This property is true of

every linearisation obtained with the algorithm described above. To understand why, note

that the function linearise3 (and hence linearise2) always returns a piece-wise

linearisation which is continuous. This property is guaranteed because the line configura-

tions within each segment are such that they connect when the error bounds are all made

equal, and balancing the error bounds is exactly what the function achieves. It follows

that every piece-wise linearisation obtained by linearise1 over intervals which do

not straddle y = 0 must be continuous. For intervals which do straddle y = 0, observe

that the complete linearisation is made by merging two linearise2-linearisations, one

for each side of y = 0. Thus the linearisation on each side is certainly continuous. How-

ever these linearisations also connect with each other because they are both constrained

to pass through the point of rotational symmetry, (0; 0:5). Thus the linearisation over the

whole interval is continuous.
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Linearised sigmoid

100−10−20

1

0

sig(y)

y

Segment, s Y

s

Y

s+1

�

s

�

s

h

s

0 -20.0 -2.273 0.0691 0.0362 0.0362

1 -2.273 0.0 0.195 0.5 0.0362

2 0.0 2.135 0.200 0.5 0.0316

3 2.135 10.0 0.0134 0.897 0.0316

Figure 4.6: Results of the piece-wise linearisation of a sigmoid over the interval [�20; 10℄

with a specified maximum linearisation error of 0:05.
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Linearisation errors

error

number of segments

20100

0.01

0

Figure 4.7: Linearisation error versus number of segments when approximating a sigmoid

over the interval [0; 10℄. Note how the reduction in linearisation error diminishes with

increasing number of segments.
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4.4 Properties and interpretation

One of the most important properties of the MLP-linearisation algorithm is continuity.

Observe that the piece-wise linearisation of each sigmoid is continuous, and that these

linearisations are linearly combined by the weights of the network. This implies that

the piece-wise linearisation of the whole network is also continuous. In particular, the

function

d

mlp(x) = a

T

s

x+ b

s

for all x 2 X
s

(4.40)

is linear within each cell s and continuous everywhere.

An immediate corollary of this result is that piece-wise linear and continuous bounds to

the network are given by

d

mlp(x)� h � mlp(x) �

d

mlp(x) + h (4.41)

where h = max

s

(h

s

). This property will prove invaluable in the next chapter.

Another important feature of the linearisation method is the emphasis on the hidden n-

ode representation, y-space. Cells are initially defined in y-space as axis-aligned hyper-

rectangles, and each x-space cell is then defined as the set of points which map to a

corresponding y-space cell.

y 2 Y

s

�

^

i

y

i

2 [Y

i;s

i

; Y

i;s

i

+1

℄;

y =W

IN
x+ 

IN
;

x 2 X

s

� y 2 Y

s

: (4.42)

The characteristics of the mapping of cells from y-space to x-space is dictated by whether

the input matrix, WIN, has more rows than columns. Let nin be the number of input nodes

(the number of columns of WIN) and nhid be the number of hidden nodes (the number of

rows of WIN). The two cases of nin � nhid and nin < nhid will now be considered.
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Figure 4.8: Illustration of the cells in a 2 dimensional y-space. The corresponding x-space

cells for a network with 3 input nodes is shown in figure 4.9.

If nin � nhid then the whole of x-space is projected onto y-space. Hence the cells in x-

space will be hyper-parallelograms with no constraint in directions in the kernel of WIN.

Figures 4.8 and 4.9 provide an illustration for the case when nin = 3 and nhid = 2.

However, if nin < nhid then the whole of x-space is mapped into a linear subspace of

y-space. This subspace will “slice” the axis-aligned hyper-rectangles defining the y-space

cells, and so the cells in x-space will not be any convenient geometric shape. Indeed some

x-space cells will be empty because the corresponding y-space cell has no members in the

range of WIN. Figures 4.10, 4.11, 4.12 gives an illustration for the case when nin = 2 and

nhid = 3.

An important conclusion to be drawn from this discussion on cell mapping is that the

resulting cells in x-space are analytically much more complex than the original cells in

y-space. Hence applying an operation on an x-space cell may well be considerably more

complex than applying a similar operation on a y-space cell. Thus instead of mapping

the cells from y-space to x-space and then applying a complex operation, mapping the

operation from x-space to y-space may be much easier to implement. Exactly this idea

will be used in chapter 5.
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Figure 4.9: Illustration of the cells in a 3 dimensional x-space which result from the

y-space cells shown in figure 4.8. Note that the cells are no longer axis-aligned hyper-

rectangles, but have become arbitrarily aligned hyper-parallelograms. The dotted lines

are a direction in the kernel of WIN; the cells are unconstrained in this direction.
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Figure 4.10: Illustration of the cells in a 3 dimensional y-space. The dashed rectangle is

the image of a 2 dimensional x-space (the range of WIN). This image forms a subspace

which “slices” some of the y-space cells. Sliced cells are shown solid; the dotted cells are

not sliced and are therefore unreachable from x-space — see the companion figure 4.11.
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Figure 4.11: A companion to figure 4.10. The solid lines show the regions of y-space

cells which are reachable from x-space.
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Figure 4.12: The x-space cells induced by the y-space cells of figure 4.10. Note the ir-

regular shape of the cells when compared with the original axis-aligned hyper-rectangular

cells in y-space.
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4.5 Summary

This chapter has presented an algorithm for dividing the input space of a single linear

output MLP into cells such that the network is accurately approximated by a linear function

within each cell. These linear functions have known error bounds, and also join up to form

a continuous piece-wise linearisation. Hence the result can be interpreted as a piece-wise

linear and continuous bound on the MLP function.

The algorithm is based on the observation that the piece-wise linearisation of each sig-

moid implies a piece-wise linearisation of the whole network. This property is used to

generate an efficient MLP-linearisation algorithm which does not require operations in

high dimensional space. Hence the complexity of this algorithm is approximately linear

in the number of hidden nodes, and is virtually unaffected by the number of input dimen-

sions. This is well suited to many classification problems which have a relatively large

number of input dimensions but insufficient data to justify a very complex function and

hence large number of hidden nodes.



Chapter 5

Extracting explanation

This chapter describes an algorithm to generate an explanation of the form described in

chapter 3 from the feed-forward network classifier described in chapter 2. The algorithm

critically relies on the bounded and continuous piece-wise linear approximation to an MLP

described in chapter 4.

5.1 Introduction

It is useful at this stage to summarise the argument so far. An MLP is trained to estimate

posterior class probabilities, and a Bayes classifier then uses these to make the optimal

classification. However such classifications are unexplained, and this motivates the need

to describe the classifications using a rule-base. Unfortunately a rule-base description

has limitations which grow exponentially with the number of input dimensions. Com-

promises are therefore unavoidable. However it is essential that these compromises be

controlled if there is to be a known relationship between the rule-base and the original

Bayes classifier/feed-forward network system. The primary means of controlling the de-

gree of compromise is through the comparative safety parameter, which is a measure of

the greatest difference between the optimal and the explained classification. Thresholding

safety gives rise to the concept of comparative safety regions. A class-k safety-r region

119
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is defined to be the largest region of input space within which all patterns can be assigned

to class k with a comparative safety greater than or equal to r.

Explaining the network/Bayes rule classifier means describing these safety regions using

rules. Obviously a class k rule must not have a comparative safety less than that of its

corresponding class k safety region. Thus every class k rule with comparative safety

r must have an antecedent region which is a subset of the corresponding safety region,

R

k

(r),

rule
k

(r) � R

k

(r): (5.1)

In terms of the rule-base this becomes

rulebase
k

(r) =

[

i

rule
k;i

(r) � R

k

(r): (5.2)

The primary tool used to produce a rule-base with the above subset property is the piece-

wise linearisation method of chapter 4. It will be shown that using this method enables

a “tight” subset of a safety region R
k

(r) to be expressed using intersections and unions

of cells and half-planes. Although this new representation, R1

k

(r), is much more explicit

than R
k

(r), it is still an awkward representation from which to extract rules. The solu-

tion is to use a further translation, expressing R1

k

(r) with an even simpler representation,

R

2

k

(r), consisting only of the union of intersections of half-planes. In order to guarantee

(5.2), each new representation is made a subset of the previous representation. Hence the

complete class k extraction process is characterised by the subset condition:

rulebase
k

(r) � R

2

k

(r) � R

1

k

(r) � R

k

(r): (5.3)

The process can be summarised as follows: a non-explicit representation of the class-

k region of space, R
k

(r), is made more and more explicit via a series of simplifying

translations. This process terminates with a union of class k rules forming the class k part
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of a rule-base. The ultimate aim is then to maximise the effectiveness and parsimony of a

rule-base containing rules for all classes.

The three translations represented by each subset symbol in equation (5.3) are described

in each of the following three sections. Note that a simplification will be made in the first

section which constrains the solution to two class problems; the sections that follow will

continue to work under this restriction. However there are no fundamental reasons why

multi-class explanations cannot be obtained using these methods.

5.2 Translating a safety region into R1

k

This section shows how the piece-wise linearisation method of chapter 4 can be used to

generate the first intermediate representation, R1

k

.

5.2.1 Converting to a single linear output MLP

Recall the equations (2.11) on page 35 for a multi-layer perceptron used to estimate pos-

terior probabilities of mutually exclusive classes:

y

j

=

X

k

W

IN
jk

x

k

+ 

IN
j

z

i

=

X

j

W

OUT
ij

sig(y

j

) + 

OUT
i

^

P (k jx) =

e

z

k

P

i

e

z

i

: (5.4)

Also recall from chapter 3 that a safety region, equation (3.31) on page 89, is the largest

region of space which an explaining classifier can assign to a particular class whilst guar-

anteeing a specified comparative safety, r:

R

k

(r) =

�

N [N \

(

x

�

�

�

�

�

^

P (k jx)

^

P (

^

d

B

(x) jx)

� r

)

: (5.5)
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This expression can be simplified by using the property that the Bayes classifier ^

d

B

(x)

assigns each pattern to the class which is estimated to be the most probable:

R

k

(r) =

�

N [N \

(

x

�

�

�

�

�

^

P (k jx)

^

P (

^

d

B

(x) jx)

� r

)

=

�

N [N \

8

<

:

x

�

�

�

�

�

�

^

i 6=k

^

P (k jx)

^

P (i jx)

� r

9

=

;

Further simplification is achieved using equation (5.4), and the property that a set of con-

junction of conditionals is equal to the intersection of sets of conditionals:

=

�

N [N \

\

i 6=k

�

x

�

�

�

�

e

z

k

e

z

i

� r

�

=

�

N [N \

\

i 6=k

fx jz

k

� z

i

� ln(r)g

=

�

N [N \

\

i 6=k

fx jf

k;i

(x) � 0g (5.6)

where

f

k;i

(x) = z

k

� z

i

� ln(r): (5.7)

Note that f
k;i

(x) is effectively a single linear output MLP. Thus each safety region may

be expressed in terms of the intersections of regions defined by thresholds on single linear

output MLP’s. The advantage of this property is that the method of chapter 4 may be used

on each f
k;i

(x) to obtain an explicit representation of the safety region consisting only of

cells and half-planes.

5.2.2 Simplifying to problems with only two classes

The rest of this thesis will be limited to problems which have only two classes, i.e. k 2

f1; 2g. The following few lines demonstrate how this simplification results in the removal

of the intersection quantifier in equation (5.6).
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An MLP estimating two posterior class probabilities only needs a single output because

the two probabilities must sum to unity.

y

j

=

X

k

W

IN
jk

x

k

+ 

IN
k

z =

X

j

w

OUT
j

sig(y

j

) + 

OUT

^

P (1 jx) = sig(z)

^

P (2 jx) = 1� sig(z) (5.8)

Following the same steps as in (5.6) it is straightforward to show that

R

k

=

�

N [N \ fx jf

k

(x) � 0g (5.9)

where

f

1

(x) = +z � ln(r)

f

2

(x) = �z � ln(r): (5.10)

5.2.3 Derivation ofR1

k

Observe that f
k

(x) is a linear combination of the hidden node sigmoids of the MLP. In

other words, f
k

(x) is a single linear output MLP which can be piece-wise linearised using

the method of chapter 4. Thus coefficients a
k;s

; b

k;s

; h

k;s

and cells X
k;s

can be obtained

which satisfy

f

k

(x) 2 a

T

k;s

x+ b

k;s

+ [�h

k;s

; h

k;s

℄ for all x 2 X
k;s

; (5.11)
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and where the cells X
k;s

are mutually exclusive regions which cover a superset of normal-

ity,

[

s

X

k;s

� N : (5.12)

It follows that when x is in X
k;s

, f
k

(x) is guaranteed to be greater than 0 if aT
k;s

x+ b

k;s

�

h

k

� 0, where h
k

= max

s

h

k;s

. The intuitive explanation is clear: within each cell, use

the worst case linearisation error to decide the half-plane which is guaranteed to be on the

correct (comparatively safe) side of the boundary. Expressing this more consisely,

a

T

k;s

x+ b

k;s

� h

k

� 0 ) f

k

(x) � 0 for all x 2 X

k;s

(5.13)

where h
k

= max

s

h

k;s

. Therefore

X

k;s

\H

k;s

� X

k;s

\R

k

; (5.14)

where the half-plane H
k;s

is defined

H

k;s

=

�

x

�

�

a

T

k;s

x+ b

k;s

� h

k

� 0

	

: (5.15)

Note that equation (5.14) is a subset relation and not an equality because H
k;s

is formed

from a linear bound on the MLP function within cell s.

Taking the union of equation (5.14) over all cells shows that

[

s

X

k;s

\H

k;s

�

[

s

X

k;s

\R

k

; (5.16)

and so if R1

k

is defined

R

1

k

=

�

N [N \

 

[

s

X

k;s

\H

k;s

!

; (5.17)
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k;s

(shaded)

Figure 5.1: Illustration of the key terms in the definitions of R
k

and R1

k

. Note that here

nhid � nin, thus making all the cells similar in shape.

then equations (5.16) and (5.12) imply the subset condition:

R

1

k

=

�

N [N \

 

[

s

X

k;s

\H

k;s

!

�

�

N [N \

[

s

X

k;s

\R

k

= R

k

: (5.18)

A two dimensional illustration of this result is shown in figure 5.1.

5.2.4 Discussion

The key property of R1

k

defined by equation (5.17) is that it expresses a subset of R
k

in

terms of simple geometric regions X
k;s

and H
k;s

. In particular, both X
k;s

and H
k;s

are

simplexes1 with particular properties: H
k;s

is a degenerate simplex defined by a single

1Recall that a simplex is a region defined by the intersection of half-planes.
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Boundary cell

Full cell

Empty cell X

k;s

\H

k;s

= ;
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6= ; and X

k;s

\

�

H

k;s

6= ;

X

k;s

\

�

H

k;s

= ;

Figure 5.2: The three combinations of a cell and a half-plane.

half-plane; X
k;s

is a simplex which maps to an axis-aligned hyper-rectangle Y
k;s

in y-

space. The value of these properties will become clear in the next section.

Note that each cell can be categorised into one of three types: empty cells are cells which

do not intersect with their half-planes; full cells are cells which are a subset of their half-

planes; and boundary cells are cells which are “sliced” by their half-planes. These three

types are illustrated in figure 5.2.

The connected property

Every boundary cell contains a hyper-plane boundary, and these boundaries have the im-

portant property that they are connected. This is a direct result of the linearisation method

producing a continuous function; any threshold defined over a piece-wise linear and con-

tinuous function must produce a connected set of constraints. This connected property

can be defined

if x

1

2

[

s

X

k;s

\H

k;s

and x

2

62

[

s

X

k;s

\H

k;s

then there exists an H
k;s

such that x

1

2 H

k;s

and x

2

62 H

k;s

: (5.19)
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x

1

x

2

Figure 5.3: An example of two cells/half-planes not satisfying the connected property.

Figure 5.3 shows an example which does not satisfy the connected property, and therefore

will not theoretically be produced by the above methods. This point will be discussed

again later.

5.3 TranslatingR1

k

intoR2

k

This section describes how R

1

k

can be simplified into a representation denoted R2

k

. The

difference between these two representations is thatR1

k

is expressed in terms of a union of

cells intersecting with half-planes, whilst R2

k

is expressed as a union of simplexes where

each simplex is formed only from the half-plane boundaries. Thus one of the effects of the

translation is to eliminate the cells from the formula. This has the advantage of describing

the comparative safety regions using a union of simplexes, where each simplex is no

longer restricted to being no larger than the size of an individual cell. Later in section 5.4

it will be seen that the method of obtaining rules guarantees that each rule is contained

within an individual simplex. Hence it is clearly advantageous to make these simplexes

as large as possible.

The first section below introduces the notation and provides a specification for an ideal

solution. The next section describes an algorithm which although not ideal, still produces

a satisfactory solution. This algorithm requires certain operations on cells and half-planes,

and the detailed implementation of these operations are described in the last section.
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5.3.1 Introduction

Define the regions of space P1

k

and P2

k

,

P

1

k

=

[

s

X

k;s

\H

k;s

; (5.20)

P

2

k

=

[

i

S

k;i

\

[

s

X

k;s

; (5.21)

where the simplex S
k;i

is defined using a set of half-plane coordinates, A
k;i

:

S

k;i

=

\

s2A

k;i

H

k;s

: (5.22)

Thus R1

k

and P1

k

are related by R1

k

=

�

N [N \P

1

k

and we will define R2

k

in terms of P2

k

,

R

2

k

=

�

N [N \ P

2

k

: (5.23)

Note that the left hand side of the P2

k

definition can be interpreted as the union of simplex-

es, where the ith simplex is formed from the intersection of half-planes H
k;s

with indexes

s taken from A

k;i

. The right hand side simply restricts the whole region to the space which

has been linearised.

Define validity and completeness,

completeness � P

2

k

� P

1

k

(5.24)

validity � P

2

k

� P

1

k

: (5.25)

Thus if both validity and completeness are satisfied then P2

k

= P

1

k

. This would constitute

an ideal solution because it implies R2

k

= R

1

k

.

The specials form of P1

k

and P2

k

give rise to the following equivalent expressions for
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completeness and validity:

completeness �
^

s

�

X

k;s

\H

k;s

� P

2

k

�

(5.26)

validity �
^

s

�

X

k;s

\

�

H

k;s

\ P

2

k

= ;

�

: (5.27)

Thus completeness ensures that all cell / half-plane intersections are in P2

k

, and validity

ensures that there does not exist a cell / half-plane intersection in P2

k

which should not be

in P2

k

.

5.3.2 An algorithm to produce a validR2

k

Unfortunately no algorithm could be found which guarantees both validity and complete-

ness. However the algorithm described below is guaranteed to produce a valid P2

k

. This

solution is sub-optimal but acceptable because validity implies the important subset con-

dition, R2

k

� R

1

k

.

First note that validity can be usefully re-expressed:

validity �
^

s

 

X

k;s

\

�

H

k;s

\

 

[

i

S

k;i

\

[

s

0

X

k;s

0

!

= ;

!

�

^

s

 

X

k;s

\

�

H

k;s

\

[

i

S

k;i

= ;

!

�

^

i

"

^

s

�

X

k;s

\

�

H

k;s

\ S

k;i

= ;

�

#

: (5.28)

The structure of this equation suggests the method of figure 5.4. For each simplex, each

half-plane/cell term is checked in turn, and the half-plane added if necessary. As an ex-

ample, consider figure 5.5 which shows four adjacent boundary cells with shading used to

represent the four X
k;s

\H

k;s

intersections. We would like to describe this shaded region

using the R2

k

representation. It is easily verified that if the coordinates s are by chance

chosen in the order [1; 4; 2; 3℄ then the half-plane indexes f1; 4; 2g will be added to A
k;1

.
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1. For i=1 to n

2. Let C be the set of coordinates of all cells

3. Initialise A
k;i

= fg

4. Until C is empty

5. Pick at random an s from C

6. If X
k;s

\

�

H

k;s

\ S

k;i

6= ; then add s to A
k;i

7. Remove s from C

Figure 5.4: Simple algorithm for producing the simplexes S
k;i

=

T

s2A

k;i

H

k;s

which

make up a valid R2

k

.

1 2 3 4

Figure 5.5: Simple 4 cell configuration of half-planes. The shaded region denotes
S

s

X

k;s

\H

k;s

.

In shorthand,

[1; 4; 2; 3℄ �! A

k;1

= f1; 4; 2g (5.29)

where the left hand side indicates the order in which the coordinates are chosen, and the

right hand side indicates the set A
k;i

after the simplex has been formed. Similarly,

[1; 4; 3; 2℄ �! A

k;2

= f1; 4; 3g (5.30)

These examples can be used to illustrate two points. First, the outputs can be simplified

because they represent simplexes with redundant half-planes. In particular, the simplex

described by A

k;i

= f1; 4; 2g is the same as the simplex described by A

k;i

= f1; 2g,

and the simplex described by A

k;i

= f1; 4; 3g is the same as the simplex described by

A

k;i

= f3; 4g. Second, different simplexes will be formed depending on the order in
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which cells are considered. By considering cells in a random order (line 5), each simplex

can be different. The union of all such generated simplexes may then satisfy completeness.

Improving the algorithm

The above algorithm can be improved upon in a number of ways. The first improvement

relies upon the connected property of the half-planes within the boundary cells. This

property implies that if a simplex does not intersect any “forbidden” region X
k;s

\

�

H

k;s

for

all boundary cells s, then the simplex does not intersect any forbidden region X
k;s

\

�

H

k;s

for all cells s. Thus only boundary cells need be considered.

The second improvement involves reducing the number of half-planes which are added

to the simplex but later found to be redundant. Intuition suggest that adjacent boundary

cells should be considered first. This approach builds a maximally local simplex before

checking the remaining boundary cells. Using this idea on the example shown in figure

5.5 prevents redundant half-planes from being formed.

The third improvement attempts to encourage completeness by beginning each new sim-

plex with a half-plane which is not in any of the simplexes generated so far.

These three modifications are embodied in the final algorithm, summarised in figure 5.6.

The first loop (lines 5 to 9) builds a locally valid simplex; the set C contains all the

coordinates of all connected boundary cells which need to be checked. At the end of

this loop, B contains the coordinates of all the boundary cells which have not yet been

checked. Hence the second loop (lines 10 to 13) checks these remaining boundary cells.

5.3.3 Cell/half-plane operations

The following operations are required by the algorithm of figure 5.6.

1. Identify all boundary cells (line 2).

2. Identify all boundary cells connected to a given boundary cell (line 9).
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1. For i=1 to n

2. Let B be the set of coordinates of all boundary cells

3. Let A
k;i

= fsg where s 62
S

i�1

j

A

k;j

; remove s from B

4. Let C = set of coordinates of all boundary cells connected to s

5. Until C is empty

6. Pick at random an s from C

7. If X
k;s

\

�

H

k;s

\ S

k;i

6= ; then add s to A
k;i

8. Remove s from both B and C

9. Add to C the coordinates of all boundary cells joined to s and in B.

10. Until B is empty

11. Pick at random an s from B

12. If X
k;s

\

�

H

k;s

\ S

k;i

6= ; then add s to A
k;i

13. Remove s from B

14. Remove all redundant half-planes from the simplex A
k;i

Figure 5.6: Algorithm to produce simplexes S
k;i

=

T

s2A

k;i

H

k;s

which make up a valid

R

2

k

.

3. Test for X
k;s

\

�

H

k;s

\ S

k;i

6= ; (lines 7 and 12).

4. Eliminate all redundant half-planes from a simplex (line 14).

The field of linear programming, [Chv80, IC94, Fou98], provides techniques which can

be used to perform all these operations. Linear programming is a means of optimising a

linear equation constrained by a set of linear equalities and inequalities. All of the above

operations are of this form. However they also have a particular structure which general

purpose linear programming techniques do not (by definition) take advantage of. This

structure can be exploited to obtain more efficient implementations of operations 1 and

2, and sometimes operation 3. Operation 4 does not have sufficient structure to make

dedicated solutions worthwhile, and so the general linear programming method called the

simplex method is used for this operation.

It was discussed in section 4.4 on page 113 that cells in x-space are analytically more

complex than cells in y-space. Thus it is not surprising that the key to solving operations

1, 2 and 3 efficiently is not to consider them to be problems in x-space, but rather to con-

sider the equivalent problems in y-space. The first section below discusses this mapping

between x-space and y-space. The succeeding sections provide implementations of each

operation in y-space.
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All of the methods below are used on cells / half-planes originating from the safety region

for a single class k. Hence the k subscript will be dropped to increase clarity.

Mapping operations from x-space into y-space

Recall (figure 4.1 on page 97) that the equation linking x-space to y-space is that of the

input layer of the MLP,

y =W

IN
x+ 

IN
; (5.31)

and that cells are originally defined as axis aligned hyper-rectangles in y-space,

y 2 Y

s

�

^

i

y

i

2 [Y

i;s

i

; Y

i;s

i

+1

℄ (5.32)

x 2 X

s

� y =W

IN
x+ 

IN
2 Y

s

: (5.33)

Recall also (equation 5.15) that the half-planes in x-space are defined,

H

s

=

�

x

�

�

a

T

s

x+ b

s

� h � 0

	

(5.34)

where (figure 4.1 on page 97) aT
s

= �

T

s

W

IN and b

s

= �

T

s



IN
+ �

s

. Hence H
s

has a

corresponding half-plane in y-space,

I

s

=

�

y

�

�

�

T

s

y+ �

s

� h � 0

	

: (5.35)

Taking equations (5.32), (5.33), (5.34), and (5.35) together, it is obvious that there is a

correspondence between cells and half-planes in x-space (X
s

, H
s

), and cells and half-

planes in y-space (Y
s

, I
s

). Given that x-space cells can have awkward shapes (section

4.4 on page 113), it is clearly much simpler to perform all the operations in y-space. In

other words, instead of mapping each cell and half-plane from y-space to x-space and then

formingR2, form an analogous R2 in y-space and then map this region into x-space. This

is remarkably simple to achieve: take the algorithm of figure 5.6 and re-write every X
s

as
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Y

s

and every H
s

as I
s

. The output from such an algorithm will be a union of simplexes

in y-space. To map these simplexes into x-space, apply equation (5.31) to change every

half-plane of each simplex from a constraint in y-space to a constraint in x-space.

If there are more hidden nodes than input nodes then one extra task is required: all redun-

dant constraints must be identified and removed. Redundant constraints may have been

introduced because x-space is a “slice” through the constraints in y-space (figure 4.10

on page 116). Note that this redundancy removal was required by the original x-space

algorithm where it was solved without relying on any special properties using linear pro-

gramming. Thus the same method may be used here.

Identifying all boundary cells

A boundary cell (see figure 5.2 and section 5.2.4) is a cell with an associated half-plane

which “slices” the cell region. In other words (in y-space),

Y

s

\ I

s

6= ;

and Y

s

\

�

I

s

6= ;: (5.36)

This is equivalent to

max

y2Y

s

�

�

T

s

y + �

s

� h

�

> 0

and min

y2Y

s

�

�

T

s

y + �

s

� h

�

< 0: (5.37)

Computing the above constrained maximum and minimum is trivial because in y-space

the constraints are axis-aligned, and this implies that each variable may be chosen inde-

pendently. Thus using the fact that Y
i;s

i

< Y

i;s

i

+1

, the solution may be written

max

y2Y

s

�

�

T

s

y + �

s

� h

�

=

X

i

M((�

s

)

i

; Y

i;s

i

+1

; Y

i;s

i

) + �

s

� h (5.38)

min

y2Y

s

�

�

T

s

y + �

s

� h

�

=

X

i

M((�

s

)

i

; Y

i;s

i

; Y

i;s

i

+1

) + �

s

� h (5.39)
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where

M(; a; b) =

8

>

<

>

:

a if  � 0

b if  < 0

: (5.40)

This method provide an extremely quick way of determining which cells are boundary

cells.

Identifying all connected boundary cells

This section describes a method of determining all the boundary cells which are connected

to a given boundary cell, Y
s

. Observe that if the half-plane I
s

intersects a particular side of

the cell, then the cell on the other side must be a boundary cell connected to Y
s

. Observe

also that checking if a half-plane intersects a side is the same problem as checking if a

cell is a boundary cell, but constrained to the sub-space defined by the side. These two

observations lead to the following method which can be used to test each adjacent cell in

turn.

Let the cell to be tested have coordinates t satisfying t = s+e

j

where e
j

= (0; : : : ; 0; 1; 0; : : : ; 0)

T

and the 1 is in the jth position. Then cell t is connected to cell s if and only if

Y

s

\ I

s

\

�

y

�

�

y

j

= Y

j;s

j

+1

	

6= ;

and Y

s

\

�

I

s

\

�

y

�

�

y

j

= Y

j;s

j

+1

	

6= ;: (5.41)

It is easy to show that this condition is equivalent to the following two computable in-

equalities:

X

i 6=j

M((�

s

)

i

; Y

i;s

i

+1

; Y

i;s

i

) + �

s

j

Y

j;s

j

+1

+ �

s

� h > 0

and
X

i 6=j

M((�

s

)

i

; Y

i;s

i

; Y

i;s

i

+1

) + �

s

j

Y

j;s

j

+1

+ �

s

� h < 0: (5.42)
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If the cell to be tested has coordinates t = s� e

j

then these conditions become

X

i 6=j

M((�

s

)

i

; Y

i;s

i

+1

; Y

i;s

i

) + �

s

j

Y

j;s

j

+ �

s

� h > 0

and
X

i 6=j

M((�

s

)

i

; Y

i;s

i

; Y

i;s

i

+1

) + �

s

j

Y

j;s

j

+ �

s

� h < 0: (5.43)

Testing the validity condition - Linear programming

The test for validity is used on lines 7 and 12 of the algorithm in figure 5.6. In y-space the

condition may be written

Y

s

\

�

I

s

\

0

�

\

s

0

2A

i

I

s

0

1

A

= ;: (5.44)

When this relationship holds, the half-plane I
s

does not need to be added to the simplex,

T

s

0

2A

i

I

s

0 .

Recall (figure 4.1 on page 97) that a cell is defined by two inequalities on each y-coordinate

(these two inequalities form two opposite sides of the cell). Recall also that half-planes

are defined by inequalities on a linear mixture of y-space coordinates. Hence determining

whether condition (5.44) holds is equivalent to determining whether there is a solution

to a set of linear inequalities. This is a linear programming problem, and in particular it

is the so called auxiliary problem of the simplex algorithm. Details of how to solve the

auxiliary problem with the simplex method can be found in [Chv80].

However, before applying the simplex method to test condition (5.44), it is worthwhile

trying to simplify the problem. One possible simplification is to determine any coordinates

s

0

2 A

i

which satisfy Y
s

\

�

I

s

0

= ;. All such s0’s may be removed from the intersection

over I
s

0’s in equation (5.44). The proof of this follows immediately from the identity

Y

s

\

�

I

s

0

= ; � Y

s

\ I

s

0

= Y

s

: (5.45)

A second possible simplification is to determine whether there exists an s0 2 A

i

which



CHAPTER 5. EXTRACTING EXPLANATION 137

ss s

0

s

0

Figure 5.7: Two illustrations of the numerical problem between connected boundary cells.

Only the left example causes a problem with the simplex algorithm.

satisfies Y
s

\ I

s

0

= ;. If so, then condition (5.44) must hold and no further testing using

the simplex method is required.

The test for both of these simplifications follows the now familiar pattern:

Y

s

\

�

I

s

0

= ; � min

y2Y

s

�

�

T

s

0

y+ �

s

0

� h

�

> 0

�

X

i

M((�

s

0

)

i

; Y

i;s

i

; Y

i;s

i

+1

) + �

s

0

� h > 0 (5.46)

and

Y

s

\ I

s

0

= ; � max

y2Y

s

�

�

T

s

0

y + �

s

0

� h

�

< 0

�

X

i

M((�

s

0

)

i

; Y

i;s

i

+1

; Y

i;s

i

) + �

s

0

� h < 0: (5.47)

Testing the validity condition for connected boundary cells

There is a numerical problem with the linear programming method of testing the validity

condition for connected boundary cells. The problem arrises because the representation

used to encode the cells and half-planes does not enforce the connected property. This

implies that the half-planes of two connected boundary cells may not exactly intersect on

the common side. The left hand side of figure 5.7 gives an example where numerical error

has made Y
s

\

�

I

s

\ I

s

0 not quite empty, although the connected property implies that it

should be. Note that the problem only occurs when the intersection (the shaded region) is

non-convex. Inspection of the right hand side of figure 5.7 should make this clear.

The solution to this numerical problem is based on the following observation: let y
0

be a

point in cell Y
s

and on the border between being in I
s

and being in �

I

s

. If y
0

is in I
s

0 then
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clearly Y
s

\

�

I

s

\ I

s

0

6= ;. Less obviously, if y
0

is not in I
s

0 then Y
s

\

�

I

s

\ I

s

0

= ;. This

follows because the half-planes from two connected cells should only intersect on the cell

side. Combining these two implications gives the following equivalence:

Y

s

\

�

I

s

\ I

s

0

= ; � y

0

62 I

s

0 (5.48)

where cells s and s0 are connected and y
0

satisfies �T

s

y

0

+ �

s

� h = 0 and y
0

2 Y

s

.

It is easy to avoid the numerical problem by using equation (5.48) with a y
0

which is not

close to the side common to both cells. Such a y
0

can be found as follows. Define ymax

and ymin

ymax = argmax

y2Y

s

�

�

T

s

y + �

s

� h

�

ymin = argmin

y2Y

s

�

�

T

s

y + �

s

� h

�

; (5.49)

which can be found in the usual way. Note that if all the components of �
s

are non-zero,

then ymax and ymin are guaranteed to be at opposite corners of the cell Y
s

. Furthermore,

for those components of �
s

which are zero, opposite corners can be chosen arbitrarily.

Let y
0

take the form

y

0

= �ymin + (1� �)ymax: (5.50)

Solving for the � which satisfies �T

s

y

0

+ �

s

� h = 0 gives

� =

�

T

s

ymax + �

s

� h

�

T

s

(ymax � ymin)
: (5.51)

Note that by the construction of ymax and ymin, and because a cell is a convex region, a

solution must exist with 0 � � � 1. A two dimensional illustration of the process is

shown in figure 5.8.

The above method should be used to check each cell s0 2 A

i

which is connected to s. In

effect, this is a third possible simplification of condition (5.44) which can be tested for
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s s

0

ymin

ymax

y

0

Figure 5.8: A two dimensional illustration of the construction of y
0

.

before applying the simplex algorithm. However this simplification does more than just

make the test more efficient, it also solves an important numerical problem.

Removing redundant half-planes

The last operation required by the algorithm of figure 5.6 is the removal of redundant

half-planes from a simplex. It is actually more useful to do this in x-space because all the

half-planes will eventually be mapped into x-space, and if the number of hidden nodes

is greater than the number of input nodes then this mapping will introduce additional

redundancies.

Thus the problem can be stated as follows: remove all the redundant half-planes from the

simplex S
i

=

T

s2A

i

H

s

. This can be achieved by testing each half-plane for redundancy

in turn. Obviously the half-plane H
s

0 is redundant if

\

s2A

i

�s

0

H

s

=

\

s2A

i

H

s

: (5.52)

Intersecting both sides with �

H

s

0 gives the following equivalent condition for redundancy

0

�

\

s2A

i

�s

0

H

s

1

A

\

�

H

s

0

= ;: (5.53)

Since every half-plane is defined with a linear inequality, a straightforward application of
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the auxiliary problem of the simplex method can be used to determine whether condition

(5.53) holds.

5.4 TranslatingR2

k

into a rule-base

This section presents the final stage of the rule extraction process. The method described

below will generate a rule-base which contains rules of all classes and of any of the three

types described in chapter 3. Parsimony and effectiveness will be heuristically maximised,

but comparative safety will be guaranteed because every rule of class k will be a subset of

R

2

k

.

5.4.1 Introduction

Assume thatR2

k

regions have been found for all classes k. We would like to describe these

regions using a parsimonious and effective rule-base which satisfies the rule condition.

This can be achieved by first generating a large number of rules within each R2

k

, and

then putting all these rules into a single rule-base. This rule-base is likely to have a high

effectiveness but extremely low parsimony. However this imbalance can then be rectified

by finding a maximally effective subset of these rules, where the number of rules in the

subset is a specified quantity which controls the parsimony of the final rule-base. Thus the

whole process has two phases: first obtain a large number of rules which form an effective

but unparsimonious rule-base; then reduce the size of this rule-base to increase parsimony

without significantly reducing effectiveness.

The advantage of this two phase approach is that the individual optimisation of each rule

is separated from the optimisation of the rule-base. Note that since a deterministic rule

optimisation algorithm will always produce the same rule from a given R2

k

, the above ap-

proach requires a random component. This randomness ensures that each rule is different,

providing a variety of rules from which to pick an effective rule-base.
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Although the descriptions which follow will all use the family of rules for ordered vari-

ables described in chapter 3, this does not imply that the rules for categorical variables

cannot be extracted. In fact the process is identical to the extraction of rules for ordered

variables except for an additional final re-writing phase. This re-writing simply involves

evaluating the rules on the codes for each categorical value (see section 3.1.4 on page 60).

5.4.2 Obtaining an effective (but unparsimonious) rule-base

The first part of the algorithm generates N class k rules which are all subsets of R2

k

. The

approach will involve seeding each rule with a sample from the unconditional density2

and then growing a rule antecedent region centred on this seed. The steps required to

achieve this are given below:

1. Randomly select a simplex from the R2

k

representation. Write this simplex S
i

=

T

s2A

i

H

s

where H
s

=

�

x

�

�

a

T

s

x+ b

s

� h � 0

	

.

2. Sample a pattern from p̂(x) which falls within S
i

and use this pattern as the proto-

type � of a new class k rule.

3. Maximally grow a rule antecedent region r about the prototype, ensuring that r

remains a subset of the simplex, r � S

i

. This is done in two stages: isotropic

growth followed by anisotropic growth.

4. Add the rule to the rule-base, and return to step 1 if the number of rules is less than

N .

This method produces rules which satisfy the subset condition because

r � S

i

) r �

[

i

S

i

) r � R

2

k

: (5.54)

A key part of the above method is the isotropic and anisotropic growth. Roughly speaking,

isotropic growth involves expanding all sides of the rule antecedent region simultaneously,

2It is straightforward to sample patterns from the kernel based density model described in appendix B.

See for example [Sil96].
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whereas anisotropic growth only expands a single side of the rule antecedent region at a

time. Both are required because isotropic growth alone may produce a rule antecedent

region with sides which can be further expanded, and anisotropic growth alone tends to

produce antecedent regions which are very thin in some directions. The latter effect results

in rules with a very low effectiveness, which is clearly undesirable.

The first section below derives the conditions which must be satisfied for each of the three

types of rule antecedent regions to be a subset of the simplex S
i

. The two subsequen-

t sections show how these conditions can be used to grow rules both isotropically and

anisotropically.

Conditions for rule validity

It is useful to rewrite the condition that the rule antecedent region is a subset of the sim-

plex,

r � S

i

� r �

\

s2A

i

H

s

�

^

s2A

i

r � H

s

: (5.55)

Hence a valid rule must be entirely on the positive side of each hyper-plane forming the

simplex. Conditions for each of the three rule antecedent regions to be on the positive side

of a given hyperplane will now be derived.

First consider the city-block rule (p = 1 case of figure 3.2 on page 55),

r =

8

<
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(5.56)

Note that both r and the half-plane H
s

are simplexes, hence r � H

s

if and only if every
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corner of r is in H
s

. There are two corners on each axis, and so r � H

s

if and only if

^

j
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s
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s

� h+ (a
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)
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� 0
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� h� (a
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j

v
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� 0: (5.57)

Note that if (a
s

)

j

� 0 then the condition with v

j

implies the condition with u

j

, and

conversely if (a
s

)

j

� 0 then the condition with u

j

implies the condition with v
j

. Hence

equation (5.57) simplifies to
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Next consider the axis aligned rule (p =1 case of figure 3.2 on page 55),

r =
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As with the case above, both the axis aligned region and the half-plane are simplexes, so

r � H

s

if and only if every corner of r is in H
s

. These corners are at �
j

+M(

j

; u

j

; v

j

)

where 
j

= �1. Thus r � H

s

if and only if
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where C = f j

j

= �1g. This simplifies in a similar way to the city-block rule condi-

tion,
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Lastly, consider the euclidean rule (p = 2 case of figure 3.2 on page 55),

r =
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This case is different from the other two because the rule region does not have any corners.

Consider minimising aT
s

x + b

s

� h subject to the constraint that x is on the boundary of

the rule antecedent region,

X

j

�

x
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j

t
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�
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= 1; (5.63)

where the t
j

will be chosen later. It is easy to show that the minimum is at x
0

where
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This implies that sign((x
0
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��

j

) = � sign((a
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), which is independent of t
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. Hence the
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The conditions for all three types of rule are summarised in table 5.1. There are two

intuitive interpretations of these conditions. First, they all imply that the rule prototype

must be in the half-plane, � 2 H
s

. Second, they all use the same combination of u
j

& v

j

,

and this combination depends only on the signs of the components of the normal to the

hyperplane, (a
s

)

j

, defining the half-plane.
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Rule type Condition for r � H
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Table 5.1: Conditions for each of the three types of rule to be on the positive side of a

hyper-plane.

Isotropic rule growth

Isotropic rule growth involves expanding all sides of the rule antecedent region simultane-

ously. Let the expansion be controlled by a positive parameter � and a vector t of positive

elements such that

u

i

= v

i

= �t

i

: (5.66)

Thus for a given t, maximal isotropic growth is achieved by the largest � which ensures

that the rule region is still a subset of the simplex S
i

.

Consider a city-block rule r being isotropically expanded within the simplex S
i

. Using

equation (5.55), the isotropic constraint equation (5.66), and the (p = 1) condition of

figure 5.1,
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: (5.67)

The maximum isotropic growth is given by changing the inequality into an equality. A
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Rule type Maximum isotropic growth

p = 1 � = min

s2A

i

a

T

s

�+ b

s

� h

max

j

j(a

s

)

j

t

j

j

p = 2 � = min

s2A

i

a

T

s

�+ b

s

� h

q

P

j

((a

s

)

j

t

j

)

2

p =1 � = min

s2A

i

a

T

s

�+ b

s

� h

P

j

j(a

s

)

j

t

j

j

Table 5.2: Maximum isotropic growth, �, for each of the three types of rule such that the

rule antecedent region is within the simplex, r � S

i

.

very similar process gives the maximum � for the other two types of rule. The results of

maximum isotropic growth for all three types of rule are summarised in table 5.2.

There are several possible choices for the isotropic growth “direction” t. One possibility

is to set t to be a vector of one’s. However this does not take into account that different di-

mensions will have different units and so should be scaled by different amounts. Another

possibility is to use the component-wise standard deviation of a sample of patterns from

p̂(s) which fall within the simplex S
i

. However the simplest solution which works well

is to obtain, by sampling, one other pattern x which is in S
i

. The “direction” of isotropic

growth can then be set by

t

j

= j�

j

� x

j

j: (5.68)

Anisotropic rule growth

An isotropically grown rule is unlikely to be optimal because it is possible that directions

can be independently expanded further. This second expansion phase is called anisotropic

rule growth.

The idea is to maximise each u
j

& v

j

in turn. The order in which this is done will clearly

have an effect on the final antecedent region. Since it is difficult to determine the optimal
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order, the u
j

’s & v

j

’s are chosen in a random order. This is a heuristic which works well

in practice.

Suppose the maximum value of u
j

is required which ensures the rule remains within the

simplex. Define

u

0

= u+ (�� u

j

)e

j

(5.69)

where e
j

is the jth unit vector. Then the condition for the corresponding city-block rule r

to be a subset of S
i

is given by
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Since the rule is assumed to satisfy the condition for � = 0, only the conjunctions and min

terms which use u0
j

need to be considered. Hence only those half-planes with (a
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need to be considered,
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from which it follows that
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If instead of maximising u
j

we wish to maximise v
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, then with v0 defined
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it is straight forward to show that the condition becomes
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Rule type Maximum anisotropic growth
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Table 5.3: Maximum anisotropic growth, � where u0 = u + (� � u

j

)e

j

, for each of the

three types of rule such that the rule antecedent region is within the simplex, r � S

i

.

Rule type Maximum anisotropic growth
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Table 5.4: Maximum anisotropic growth, � where v0 = v + (� � v

j

)e

j

, for each of the

three types of rule such that the rule antecedent region is within the simplex, r � S

i

.

Very similar results may be obtained for the other two types of rules. These are given in

tables 5.3 and 5.4.

5.4.3 Reducing the number of rules

The procedure described above can be used to obtain a large number of rules within each

R

2

k

region for each class k. Merging these rules into a single rule-base produces a large

rule-base which is likely to have a high effectiveness at the expense of being extremely

unparsimonious. Obviously the number of rules must be reduced. The optimum solution

involves searching over all subsets of size n < N , and selecting the subset which is the

most effective. However using this approach alone is impractical because there are
�

N

n

�
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subsets, and typical values are N = 10000, n = 5, giving
�

N

n

�

� 8� 10

17. The solution

is therefore firstly to reduce the number of rules using sub-optimal but reasonably fast

methods before applying a search over all combinations. Two such algorithms, a greedy

forward selection and a greedy backward pruning, are described below. Obviously all

rules with an individual effectiveness less than some threshold could be removed prior to

employing these algorithms.

Greedy forward selection

This algorithm works by accumulating rules in a new rule-base, adding each time the rule

which gives rise to the largest increase in effectiveness of the new rule-base. A reasonably

efficient implementation is given below:

1. Let R
0

be the rule-base of many rules. Initialise R = fg

2. Initialise S = a large sample of patterns from p̂(x)

3. Find the rule r 2 R
0

which covers the largest number of patterns in S

4. Remove from S all patterns which activate r

5. Add r to R and remove r from R
0

6. Return to step 3 until R contains the desired number of rules.

Greedy backward pruning

This algorithm works by repeatedly eliminating rules from the rule-base, each time re-

moving the rule which gives rise to the smallest reduction in effectiveness. A possible

implementation is given below:

1. Let R be the rule-base to be reduced

2. Initialise S = a large sample of patterns from p̂(x)

3. Find the rule r 2 R such that (R� r) covers the largest number of patterns in S

4. Remove r from R

5. Return to step 3 until R contains the desired number of rules.
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Illustrative example

To clarify the use of these two greedy algorithms, consider the example of wanting to re-

duce a rulebase of 1000 rules to a rulebase of 5 rules. Using some large sample of patterns

from p̂(x), remove from the rulebase all rules which cover fewer than 100 patterns. Then

use the greedy forward selection procedure to reduce the rulebase to 50 rules, followed

by greedy backward pruning to reduce this further to 15 rules. Finally, use an all combi-

nations search to find the most effective subset of 5 rules. Although this is a very simple

procedure which could probably be improved in a number of ways, it was found to be an

effective and practical solution to the problem of increasing parsimony without avoidably

decreasing effectiveness.

5.4.4 Reducing the complexity of the rules

The above algorithm produces a rule-base of rules, where each class k rule is a subset of

one of the simplexes from R

2

k

,

each class k rule r satisifes r � S

k;i

for some i (5.75)
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This makes it obvious that

r � S

k;i

) r � R

2

k

(5.78)

thus verifying that such rules satisfy the subset condition (equation 5.3). However e-

quation (5.77) also demonstrates that rules are only constrained in regions of normality.

Exploiting freedom in regions of novelty may make it possible to simplify some of the

rules. Essentially, rules can be grown further so long as the newly covered region is en-

tirely novel. An example of this was given at the end of chapter 3. In practice it is difficult

to achieve such simplifications because the definition of normality, N = fx jp̂(x) > tg is

an inconveniently defined region of space.

Note that it is dangerous to rely on a novelty test which is based on a sample of normal

patterns. This is because high-dimensional space cannot be adequately filled by a sample

of points, and so there is no guarantee that the extra space covered by growing the rule

further does not intersect with normality. If it does, then it may also cross the safety

threshold, thus losing the rule’s validity.

In conclusion, reducing the complexity of the rules in this way requires further research

(see chapter 7).

5.5 Summary

This chapter has described a series of methods which combine to extract a rule based ex-

planation of a feed-forward network classifier. These rules have the vital property that

they have a guaranteed comparative safety, which essentially specifies a bound on the dif-

ference between the rule-based explanation and the network’s unexplained classification.

In addition to ensuring comparative safety, several algorithms have been suggested which

attempt to optimise the trade-offs between effectiveness and parsimony, and thus provide

a rule-base which can reasonably be said to explain.
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Figure 5.9 provides a summary of the content of this chapter, and how it combines with

the contents of the previous chapters to form a complete rule extraction process. Many of

the details have consisted of techniques for simplifying representations of regions of input

space. This began with an application of the MLP piece-wise linearisation method to trans-

late an implicit description of each safety region into an explicit representation in terms

of cells and half-planes. Rather than attempting to translate this representation directly

into rules, it was found to be expedient to use an intermediate representation consisting

of a union of simplexes. Thus it was explained how a rule-base of prototype based rules

could be created by “seeding” and “growing” antecedent regions within randomly chosen

simplexes. These rules could be of any of the three p-norm types: city-block (p = 1), eu-

clidean (p = 2), and axis-aligned (p =1). Finally, several algorithms were suggested for

finding an effective subset of a large number of such rules, thus producing the end produc-

t: a rule-base with a guaranteed comparative safety and heuristically optimised parsimony

and effectiveness.
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Safety regions (ch.3)

Describe each safety region using...

...a threshold on a single linear output mlp

...rules

...a union of simplexes

...cells and halfplanes (using ch.4)

Section 5.2

Section 5.3

Section 5.4(ch.2)

from trained mlp (ch.2)^
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Figure 5.9: A summary of the rule extraction process.



Chapter 6

Results

This chapter presents the results of applying the rule extraction method on three non-

artificial datasets. The first section describes the criteria used to select suitable datasets,

and the second section discusses some general issues relating to implementation and ex-

perimental procedure. The final three sections present the results for each of the three

datasets.

6.1 Datasets

There are numerous repositories of datasets, such as the UCI machine learning databases

archive [MA95], the CMU nnbench [WF98], Proben1 [Pre94], StatLog [MST94], ELE-

NA [JGDAC+98], and DELVE [RNH+98]. Two very useful sources are StatLib [Sta98],

and the benchmarking of learning algorithms information repository page [Pre98]. There

have also been several attempts to provide standard benchmarks so that different algo-

rithms can be compared under reproducible conditions, [MST94, Pre94, Zhe93, RNH+98,

WF98].

The principal criteria used to select the test problems were as follows:

1. The dataset must come from a real problem. Several datasets such as the MONKS

problems are artificially generated and were not therefore considered a realistic test.

154
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2. The variables in the dataset must have semantics. Clearly if the variables do not

mean anything then neither will an explanation in terms of these variables. Some

semantics are withheld for reasons of confidentiality (e.g. the German credit dataset

from StatLog), and some variables are not intuitively interpretable, for example

auto-regressive or reflection coefficients [Mak75].

3. The problem must require a statistical approach. Some datasets are essentially non-

stochastic (such as the exclusive-or problem) and hence an inappropriate test for the

method described in this thesis.

4. The classification problem must be non-trivial. Datasets such as the Fisher iris or

the crabs data are very easy to classify.

A secondary criteria is that the problem must have only two classes. This is due to a

limitation of the implementation (See section 5.2.2 on page 122).

The above considerations led to three datasets being chosen to assess the rule extraction

method developed in this thesis. The first is a heart disease dataset for which the task is

to predict the presence or absence of heart disease from a variety of medical tests carried

out on patients (section 6.3). The task in the second problem is to predict the presence

or absence of diabetes in women of Pima Indian descent (section 6.4). Lastly, the third

problem is a breast cancer dataset for which the task is predict whether a breast tissue

sample is cancerous or non-cancerous (section 6.5).

6.2 Preamble to results

Central to the results is an evaluation of the similarities and differences between the ex-

tracted rule-base and the network. It is this comparison which should be used to judge

whether a satisfactory explanation of the network-based classifier has been obtained.

A comparison with other algorithms described in the literature would only have limited

value because in most cases there is no tight coupling between the feed-forward network

and the rules. It is this coupling, controlled via comparative safety, which is a primary
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focus of this thesis. Those algorithms which do have a guaranteed equivalence between

the explanation and network also require a large number of rules to cover a reasonable

fraction of all data. Thus the parsimony and effectiveness of the final rule-based expla-

nations are also of vital importance. For these reasons, no other rule extraction algorithm

was implemented for comparison, although reference is made to any published results

(classification performance, explanation etc) on the datasets studied.

6.2.1 Implementation details

The complete classification system was implemented in the Java programming language,

[Jav98]. The three sub-sections below describe some of the practical details which were

common to all three datasets.

Estimating conditional class probabilities, P (k jx)

Obtaining an estimate of the conditional class probabilities was achieved using an MLP

as follows. First, the optimal network architecture (number of hidden nodes and amount

of weight decay) was determined using 10-fold cross-validation. This involved training a

network with a given architecture on data from 9 of the 10 partitions and evaluating the

performance on the data from the 10

th partition. This was repeated for all 10 partitions

and the results averaged. Average negative log probability scores were used to select

the optimal architecture, where the negative logarithm probability score is the value of

the error function (without weight decay) evaluated on data not used for training. This

measure was preferred over average classification rate for two reasons. First, at this stage

the aim is to obtain the best estimate of the probability function. The accuracy of this

estimate is given by the likelihood, which is one reason why the negative log likelihood

is the error function to be minimised by the whole process. Second, classification rate

is estimated by counting patterns and is therefore quantised into discrete values. The

resolution of this discretisation is low for relatively small datasets.
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Once the optimal number of hidden nodes and weight decay coefficient had been deter-

mined, all the training data was used in a second phase to train the final network.

Each network was trained using the scaled conjugate gradient algorithm [Møl93]. This is

a far superior method than gradient descent, although like all “hill climbing” algorithms,

it suffers from the possibility of converging to a local minimum. Hence the best result

from three random initial conditions was chosen to reduce the effects of this problem.

Estimating unconditional density, p(x)

Estimating the unconditional probability density function was achieved using the kernel

based method described in appendix B. Recall that there are two reasons for estimating

unconditional density. First, the novelty detector uses a threshold on the unconditional

density estimate to decide the normality of new patterns. Second, the unconditional den-

sity estimate is used to generate sample patterns required both to seed rules and to assess

the effectiveness of these rules. However it was decided that a novelty detector was not

required on any of the three test problems because there was no reason to believe that

any of the patterns were novel. Note that novelty detection would be required to detect

changes in the distribution of the data if the system was being used on-line to classify new

patterns.

Extracting a rule-base

The rule extraction algorithm described in this thesis has several user controlled param-

eters, chosen by a combination of experimentation, an intuitive balancing of parsimony,

effectiveness, and comparative safety, and bearing in mind the requirement for the algo-

rithm to finish in a reasonable length of time. Listed below are the more important details.

No MLP was linearised to an accuracy requiring more than a few tens of thousands of cells.

Initially comparative safety was always set to 1:0, but if the effectiveness/parsimony of

the final rule-base was unacceptable then a smaller figure was tried.
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Once a piecewise linear representation of the MLP had been obtained, a large rule-base of

1000 rules per class was extracted. This rule-base was then optimised for parsimony as

follows. Based on a sample of 10000 patterns generated from the unconditional density

estimate, all rules which covered fewer than 100 patterns were removed from the rule-

base. The greedy forward selection procedure was then used to reduce the rule-base to 50

rules, followed by greedy backward selection to reduce this further to 15 rules. Finally, the

most effective sets of 6, 5, 4, 3 and 2 rules were found by searching over all combinations

of these 15 rules. Note that this procedure places no preference on rules of any particular

class. If it is more important to obtain rules for a particular class then the obvious approach

is to optimise the parsimony of the rules for each class separately.

The simplex linear programming method described in [Chv80] was used to implement the

various cell/hyperplane operations required by the algorithm.

6.3 Dataset 1: Heart Disease

The purpose of this dataset is to predict the presence or absence of heart disease given

the results of various medical tests carried out on each patient. The dataset comes from

the Cleveland Clinic Foundation and was originally supplied by Dr Detrano of the V.A.

Medical Center, Long Beach, CA. The results from the tests were encoded as patterns

with 6 categorical variables and 7 ordered variables, see table 6.1. There are a total of 270

patterns; 120 of these are from patients with heart disease, and 150 from patients without

heart disease. Plotting every variable against every other (pairwise scatter plots) showed

very little separation between the two classes; neither did it reveal any obvious outliers.

This data was previously used in the Statlog project [MST94] and may be downloaded

from their web site. It was also used by [AG96a].
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Categorical variable Code Values

sex sex female, male

chest pain type chest typical angina, atypical angina, non-anginal, asymptomatic

fasting blood sugar > 120 mg/dl sugar low, high

resting electrocardiographic results ecg normal, wave abnormal, hypertrophy

exercise induced angina angina no, yes

thal thal normal, fixed, reversible

Ordered variable Code Values

age age 29 - 77

resting blood pressure in mmHg bp 94 - 200

serum cholesterol in mg/dl cholest 126 - 564

maximum heart rate achieved in bpm heart 71 - 202

exercise induced ST depression relative to rest st 0 - 6.2

the slope of the peak exercise ST segment slope upsloping(1), flat(2), downsloping(3)

number of major vessels coloured by fluoroscopy vessel 0,1,2,3

Table 6.1: (Heart disease problem) Description of the variables in the dataset.
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# correct per class

#hidden nodes weight decay score absent/150 present/120 total/270

1 0.005 0.3798 135 96 231

1 0.001 0.3752 134 97 231

1 0.0005 0.3871 133 98 231

2 0.01 0.3911 134 96 230

2 0.005 0.3795 135 96 231

2 0.001 0.4387 134 91 225

3 0.01 0.3870 134 95 229

3 0.005 0.3785 134 95 229

3 0.001 0.4495 127 92 219

4 0.01 0.3851 134 94 228

4 0.005 0.3769 135 95 230

4 0.001 0.4656 130 95 225

Table 6.2: (Heart disease problem) 10-fold cross-validation results from training different

feed-forward networks.

6.3.1 Training the feed-forward network

The categorical variables were encoded using the scheme given in section 2.3.4 on page

40. This maps each categorical variable with k categories into k vectors in k � 1 dimen-

sions. Since each ordered variable is mapped to a single network input, it follows from

table 6.1 that the MLP has a total of 17 input nodes. A single output was used to estimate

the conditional probability of heart disease, P (heart disease jx).

It was decided to use all the data to train the network because there were so few patterns

relative to the number of input dimensions. Thus there was no independent test set on

which to estimate generalisation performance.

Table 6.2 shows the results of applying the 10-fold cross-validation procedure described

in section 6.2.1. The “score” column gives the negative logarithm conditional class prob-

abilities, averaged both over patterns within each partition and over all 10 partitions. This

provides a relative measure of how accurately the network has estimated the conditional

class probabilities. The next 3 columns give the average number of correct classifications

over the 10 sets of partitions.

The negative logarithm probability scores were used to determine the optimal number of

hidden nodes and amount of weight decay. Thus a single final network with 1 hidden
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Figure 6.1: (Heart disease problem) Output from the final network. The circles/crosses

are patterns labelled with/without heart disease.

node was selected and trained on all the data using a weight decay coefficient of 0:001.

Figure 6.1 shows the output from this network evaluated on all the data. This plot gives

an indication of the class separation achieved.

6.3.2 Extracting a rule-base

The MLP was linearised to a maximum error of H = 0:005. This produced a one dimen-

sional division of hidden node space into 22 cells with a linearisation error of 0:00458.

As expected, only one of these cells was a boundary cell (see figure 5.2 on page 126 for

a reminder of the definition of a boundary cell). This completed the formation of the R1

representation.

To translate this into the R2 representation, comparative safety was set to 1:0 and one

simplex (containing a single half-plane) was obtained for both classes. These two sim-

plexes covered all but 3 patterns from a sample of 10000 patterns, thus demonstrating the
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Axis-aligned Euclidean City-block

Seed sample (10000) 30% 45% 96%

New sample (10000) 14% 32% 95%

Original data (270) 27% 51% 99%

Table 6.3: (Heart disease problem) Effectiveness of the three different rule-bases, each

containing 1000 rules per class.

effect of a small but non-zero linearisation error. The geometric interpretation is that the

two simplexes do not quite touch.

Using a sample of 10000 patterns, 1000 rules for each class were then generated to de-

scribe the space occupied by the two simplexes. This was repeated for each of the three

types of rule. Table 6.3 gives the effectivenesses of these rule-bases on the sample used to

seed the rules, a new sample of 10000 patterns, and the original data. The effectiveness on

the sample used to seed the rules is greater than the effectiveness on an independent sam-

ple because there are rules which are so small that they are only likely to be activated by

the pattern used to seed it. This may be considered to be a form of overfitting. The reason

for the effectiveness being higher on the original data than on the new sample was sus-

pected to be due to the difficulties in estimating density. In particular, the density estimate

was probably rather “broad” in comparison with the true underlying density distribution.

Note that axis-aligned rules are the least effective, followed by euclidean, and that city-

block rules are the most effective. This ordering is in agreement with the theoretical result

shown in figure 3.11 on page 68. Due to the low effectiveness of axis-aligned and eu-

clidean rules it was decided only to retain the city-block rule-base. This was optimised

for parsimony using the method described in section 6.2.1. Table 6.4 gives the effective-

ness of each of these rule-bases. Note that a new sample of 10000 patterns was used for

each optimisation, and so the table shows the effectiveness both before and after each

optimisation.

Placing a strong weight on maximising parsimony, the rule-base with only 2 rules was

selected as the final explanation of the network. These 2 rules are shown in table 6.5, and

their performance is shown in table 6.6. The latter table shows the effectiveness of the

rule-base, the accuracy of the rule-base, the accuracy of the network, and the comparative
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Number of rules Effectiveness

Before After Before After

2000 1517 95% 95%

1517 50 95% 91%

50 15 91% 89%

15 6 89% 85%

15 5 89% 83%

15 4 89% 82%

15 3 88% 78%

15 2 89% 75%

Table 6.4: (Heart disease problem) Table showing the reduction in effectiveness (estimat-

ed on samples of 10000 patterns) as the parsimony of the city-block rule-base is increased.

accuracy. Naturally the comparative accuracy is equal to unity because the comparative

safety was set to 1:0. Note that these results were computed using the 270 examples in

the dataset, so the network and rule-base accuracy figures may contain significant bias.

Before discussing this explanation in detail, the following is a quick reminder of the for-

mat of a city-block rule (see section 3.1.3 on page 57). A city-block rule is activated if the

sum of the contributions (one per variable) is less than unity, and the rule tableau simply

indicates how each contribution (one per row) is calculated. For categorical variables the

contribution simply depends upon the category, and so the rule simply lists the possible

contributions. For ordered variables the contribution is the difference between the value

of the variable and some prototype value, divided by one of two possible weighting co-

efficients. Which weighting coefficient is used depends upon the sign of the difference

between the value and the prototype value. In principle the rule tableau gives two weights

and a prototype value for each ordered variable, although for clarity an infinite weight is

represented by a blank. Several numerical examples will be given in the following section.

6.3.3 The explanation

This section is divided into two parts: a basic interpretation of the two heart disease rules;

followed by a demonstration of how these rules explain the classification of individual

patterns.
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Categories template

sex : female male

chest : typical atypical non-angina asymptomatic

sugar : low high

ecg : normal abnormal hypertrophy

angina : no yes

thal : normal fixed reversible

Rule 1: HEART DISEASE if

sex : 0.134 0

chest : 0.242 0.1637 0.202 0

sugar : 0 0.00206

ecg : 0 0 0

angina : 0.0509 0

thal : 0.1833 0.1904 0

age : 17 +321.4

bp : -360.6 167

cholest : -2091 419

heart : 122 +344.5

st : -17.84 2.1

slope : -13.09 3

vessel : -6.807 2

Rule 2: NO HEART DISEASE if

sex : 0 0.1413

chest : 0.06059 0.1431 0 0.2131

sugar : 0 0

ecg : 0 0.02561 0.04988

angina : 0 0.05368

thal : 0 0 0.1933

age : -304.77 89

bp : 98 +342.0

cholest : 314 +1983

heart : -326.64 194

st : 0 +16.92

slope : 1 +12.41

vessel : -1 +6.455

Table 6.5: (Heart disease problem) The final two city-block rules extracted from the feed-

forward network. These rules are guaranteed to give the same classification as the net-

work, and cover 245=270 � 91% of the patterns in the dataset.
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No heart disease Heart disease Total

rule-base effectiveness 138/150 � 92% 107/120 � 89% 245/270 � 91%

rule-base accuracy 128/138 � 93% 94/107 � 88% 222/245 � 91%

network accuracy 139/150 � 70% 102/120 � 95% 241/270 � 89%

comparative accuracy 141/141 � 100% 104/104 � 100% 245/245 � 100%

Table 6.6: (Heart disease problem) The performance of the two city-block rules shown in

table 6.5 on the 270 examples in the dataset.

Basic interpretation

A basic interpretation of the two rules may be obtained by examining the minimum and

maximum contributions from each row of the rule. For categorical variables these con-

tributions are immediately apparent from the categories template, which indicates which

contribution corresponds to which category. Clearly the value of sugar is irrelevant to

the activation of Rule 2 since either value contributes zero to the activation. In addition,

the value of sugar is only slightly relevant to the activation of Rule 1. This suggests

that the variable is unimportant. Similarly, the value of the ecg variable is irrelevent to

the activation of Rule 1, and is also unimportant to the activation of Rule 2 because it

makes no contribution when it is normal and only a very small contribution when ecg

is not normal. Taking a third example, the effect of the gender of the patient on the rules

is easily understood. The heart disease rule is more likely to be activated if the patient

is male because then there is no contribution from the SEX row; similarly, the no heart

disease rule is more likely to be activated if the patient is female.

Reading the contributions for ordered variables is only slightly more complicated. Con-

sider for example blood pressure (bp) and Rule 1. If the blood presure of the test patient is

less than 167 mmHg then the contribution from this row is 167�bp

360:6

. Thus lower blood pres-

sure gives rise to a larger contribution from this row, and therefore decreases the chance

of this rule being activated. Note that if the blood presure is greater than 167 mmHg then

there is no contribution from this row because the right-most column is infinite (represent-

ed as a blank).

A basic interpretation of the conditions on the remaining ordered variables is as follows:
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high blood pressure, high cholesterol, low maximum heart rate are all factors which re-

duce the total contribution of rule 1, and thus increase the possibility of assignment to the

heart disease class. Perhaps curiously, the effects of age are counter-intuitive: older does

not mean more likely to have heart disease. However two points must be remembered:

firstly, this conclusion is based upon a single variable and thus ignores possible correla-

tions between the variables; second, all these conclusions ultimately derive from a sample

of only 270 patients and so may not be statistically significant. Of course it is only by

extracting explanation that these kinds of effects can be detected.

The contributions from each row in each rule are shown in figure 6.2. These plots illustrate

graphically which variables make significant contributions and hence may prevent the

activation of a rule. Thus sugar is confirmed to be irrelevant, followed by ecg and

angina. cholesterolmostly contributes very little, and this can also be seen directly

from the rules because the divisors (-2091 in rule 1 and 1983 in rule 2) are relatively large.

Note that these plots are useful for assessing the contributions of the ordered variables

because they normalise out the effects of scale. Of particular interest are those variables

which contribute a wide range of values.

A further simplification of the above approach is to consider the prototype pattern(s) for

each rule. A prototype pattern may be defined as any pattern giving rise to the minimum

contribution to the activation of the rule. In the case of ordered variables the coordinates

are the middle column, and in the case of categorical variables the prototype categories

are those which make the smallest contribution. Hence the prototype patterns for the two

rules are shown in table 6.7. The crudest explanation of any new pattern is to say that it is

most similar to one of these two prototype patterns and thus activates the corresponding

rule.

Explaining individual patterns

Though constructive, the conclusions which can be drawn from analysing variables indi-

vidually is limited. To gain an understanding of the interactions between variables it is



CHAPTER 6. RESULTS 167

Rule 1

contributions

0 1

sex

chest

sugar

ecg

angina

thal

age

bp

cholest

heart

s t

slope

vessel

Rule 2

contributions

0 1

sex

chest

sugar

ecg

angina

thal

age

bp

cholest

heart

s t

slope

vessel

Figure 6.2: (Heart disease problem) Contributions from each variable in each rule over all

270 patterns in the dataset. Random jitter has been added both vertically and horizontally

to separate co-incident points.
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Rule 1: HEART DISEASE prototype pattern

sex : male

chest : asymptomatic

sugar : low

ecg : normal, abnormal or hypertrophy (ie any)

angina : yes

thal : reversible

age : 17 and below

bp : 167 and above

cholest : 419 and above

heart : 122 and below

st : 2.1

slope : 3

vessel : 2 or 3

Rule 2: NO HEART DISEASE prototype pattern

sex : female

chest : non-angina

sugar : low or high (ie any)

ecg : normal

angina : no

thal : normal or fixed

age : 89 and above

bp : 98 and below

cholest : 314 and below

heart : 194 and above

st : 0

slope : 1

vessel : -1

Table 6.7: (Heart disease problem) Prototype patterns for the two rules shown in table 6.5.
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useful to look at the explained classification of individual patterns. Two such explana-

tions are shown in tables 6.8 and 6.9. The first shows why a particular pattern should be

classified as corresponding to a patient with heart disease. In addition, this explanation

indicates the large number of similar patterns which would also be classified as the heart

disease class. For example, this pattern would be given the same classification even if the

CHEST variable was TYPICAL. Similarly, even if the maximum achieved heart rate was

increased to 180 beats per minute and the blood presure reduced to 80 mmHg, then this

pattern would still be classified as the heart disease class.

The second explanation, shown in table 6.9, justifies assigning a different pattern to the

no heart disease class. Exactly the same kind of reasoning applies, and the effect on the

classification from making changes to the input pattern is immediately apparent.

6.3.4 The effects of decreasing comparative safety

The effectiveness of the final two rules is relatively high (covering 91% of the data), but

it is constructive to see if this figure can be increased by decreasing comparative safety.

Recall from figure 3.16 on page 81 that reducing comparative safety increases the width

of a “dead-band”, within which patterns may be assigned to either class. Clearly it is not

possible to produce a similar plot for problems in more than two dimensions, however the

probability plot shown in figure 6.1 may be used to view the distribution of the classes

for problems of any number of dimensions. This plot was therefore used to decide that

an acceptable comparative safety would be 0:43 because it produces a dead-band between

^

P (heart disease jx) = 0:3 and ^

P (heart disease jx) = 0:7.

Thus the rule extraction procedure was repeated with comparative safety set to 0:43, and

this produced the results shown in table 6.10. The effectiveness of these rules is only

marginally higher than the effectiveness of rules extracted with a comparative safety of

unity (see table 6.3). Certainly the effectiveness of the axis-aligned and euclidean rules

are still very low. Optimising the city-block rule-base for parsimony produced two rules

with the performance shown in table 6.11. Thus reducing comparative safety from 1:0
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Categories template

sex : female male

chest : typical atypical non-angina asymptomatic

sugar : low high

ecg : normal abnormal hypertrophy

angina : no yes

thal : normal fixed reversible

Rule 1: HEART DISEASE ** activated **

pattern contrbn | condition

sex : male 0 | 0.134 0

chest : asymptomatic 0 | 0.242 0.1637 0.202 0

sugar : low 0 | 0 0.002056

ecg : hypertrophy 0 | 0 0 0

angina : no 0.0509 | 0.0509 0

thal : normal 0.1833 | 0.1833 0.1904 0

age : 70 0.1649 | 17 +321.4

bp : 130 0.1026 | -360.6 167

cholest : 322 0.0464 | -2091 419

heart : 109 0 | 122 +344.5

st : 2.4 0 | -17.84 2.1

slope : 2 0.0764 | -13.09 3

vessel : 3 0 | -6.808 2

TOTAL CONTRIBUTION = 0.625

Rule 2: NO HEART DISEASE ** not activated **

pattern contrbn | condition

sex : male 0.1413 | 0 0.1413

chest : asymptomatic 0.2131 | 0.06059 0.1431 0 0.2131

sugar : low 0 | 0 0

ecg : hypertrophy 0.0499 | 0 0.02561 0.04988

angina : no 0 | 0 0.05368

thal : normal 0 | 0 0 0.1933

age : 70 0.0623 | -304.8 89

bp : 130 0.0936 | 98 +342.0

cholest : 322 0.0040 | 314 +1983

heart : 109 0.2602 | -326.6 194

st : 2.4 0.1418 | 0 +16.92

slope : 2 0.0806 | 1 +12.41

vessel : 3 0.6196 | -1 +6.455

TOTAL CONTRIBUTION = 1.67

Table 6.8: (Heart disease problem) Explanation of why a given pattern is assigned to the

heart disease class.
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Categories template

sex : female male

chest : typical atypical non-angina asymptomatic

sugar : low high

ecg : normal abnormal hypertrophy

angina : no yes

thal : normal fixed reversible

Rule 1: HEART DISEASE ** not activated **

pattern contrbn | condition

sex : male 0 | 0.134 0

chest : non-angina 0.2020 | 0.242 0.1637 0.202 0

sugar : low 0 | 0 0.002056

ecg : hypertrophy 0 | 0 0 0

angina : no 0.0509 | 0.0509 0

thal : normal 0.1833 | 0.1833 0.1904 0

age : 44 0.0840 | 17 +321.4

bp : 140 0.0749 | -360.6 167

cholest : 235 0.0880 | -2091 419

heart : 180 0.1684 | 122 +344.5

st : 0 0.1177 | -17.84 2.1

slope : 1 0.1528 | -13.09 3

vessel : 0 0.2938 | -6.808 2

TOTAL CONTRIBUTION = 1.42

Rule 2: NO HEART DISEASE ** activated **

pattern contrbn | condition

sex : male 0.1413 | 0 0.1413

chest : non-angina 0 | 0.06059 0.1431 0 0.2131

sugar : low 0 | 0 0

ecg : hypertrophy 0.0499 | 0 0.02561 0.04988

angina : no 0 | 0 0.05368

thal : normal 0 | 0 0 0.1933

age : 44 0.1477 | -304.77 89

bp : 140 0.1228 | 98 +342.0

cholest : 235 0 | 314 +1983

heart : 180 0.0429 | -326.64 194

st : 0 0 | 0 +16.92

slope : 1 0 | 1 +12.41

vessel : 0 0.1549 | -1 +6.455

TOTAL CONTRIBUTION = 0.659

Table 6.9: (Heart disease problem) Explanation of why a given pattern is assigned to the

no heart disease class.
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Axis-aligned Euclidean City-block

New sample (10000) 17% 39% 100%

Original data (270) 31% 57% 100%

Table 6.10: (Heart disease problem) Effectiveness of the three different rule-bases, each

containing 1000 rules per class, extracted with a comparative safety of 0:43.

No heart disease Heart disease Total

rule-base effectiveness 145/150 � 97% 116/120 � 97% 261/270 � 97%

rule-base accuracy 134/145 � 92% 98/116 � 84% 232/261 � 89%

network accuracy 139/150 � 70% 102/120 � 95% 241/270 � 89%

comparative accuracy 150/151 � 99% 108/110 � 98% 258/261 � 99%

Table 6.11: (Heart disease problem) The performance of two city-block rules extracted

with comparative safety of 0:43, estimated using the 270 examples in the heart disease

dataset.

to 0:43 has increased the effectiveness of two rules from 91% to 97%. Naturally this

means that comparative accuracy is also reduced, albeit by a very small amount. This was

perhaps to be expected since there are only a small number of patterns in the 0:3 to 0:7

dead-band. Note that as before, the network and rule-base accuracies are biased because

they are estimated on the same data as was used to train the original network.

6.4 Dataset 2: Pima Indian

The purpose of this dataset is to predict the presence or absence of diabetes in women of

Pima Indian descent living near Phoenix, Arizona, USA. The data was collected by the

US National Institute of Diabetes and Digestive and Kidney Diseases, and the subject-

s were tested for diabetes according to World Health Organization criteria. The results

of various physiological measurements and medical tests on each subject were encoded

as a pattern consisting of 8 ordered variables. There was originally 768 observations of

these 8 variables, however many of the patterns contained zero values which are physi-

cally impossible. Following [Rip96], these patterns and the serum insulin variable were

removed from the data. This left a total of 532 patterns with 7 variables (see table 6.12).

355 of these patterns were from subjects without diabetes, and 177 from subjects with
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Ordered variable Code Values

number of pregnancies npreg 0 - 17

plasma glucose concentration glu 56 - 199

diastolic blood pressure (mm Hg) bp 24 - 110

triceps skin fold thickness (mm) skin 7 - 99

body mass index (kg=m2) bmi 18.2 - 67.1

diabetes pedigree function ped 0.085 - 2.42

age age 21 - 81

Table 6.12: (Pima Indian problem) Description of the variables in the dataset.

diabetes. Plotting every variable against every other (pairwise scatter plots) showed very

little separation between the two classes; neither did it reveal any obvious outliers.

The dataset has been used previously by both [Rip96] and [Tar98]. It may be downloaded

from the UCI machine-learning database collection [MA95], or from Proben1 [Pre94],

or alternatively from [Rip96]. The latter was used here because it was already split into

training and test partitions of 200 and 332 patterns respectively.

6.4.1 Training the feedforward network

An MLP network with the 7 ordered variables as inputs and a single output to estimate the

conditional probability of diabetes, P (diabetes jx), was trained as before.

The 10-fold cross-validation method described in section 6.2.1 was used with the 200

training patterns in order to optimise the number of hidden nodes and weight decay coef-

ficient. Table 6.13 summarises the results of these experiments.

Figure 6.3 shows a graph of the minimum scores obtained by networks of increasing

number of hidden nodes. According to this plot, the optimal network has at least 20

hidden nodes. However the benefits of choosing the best network with 20 hidden nodes

over the best network with 5 hidden nodes is marginal, as can be seen by considering that

75% of the decrease in the value of the score occurs when the number of hidden nodes is

increased from 1 to 5. However there is also a pragmatic motive for preferring a network

with a relatively small number of hidden nodes. The amount of computer memory and

execution time required by the rule extraction algorithm increases with the number of
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# correct per class

#hidden nodes weight decay score non/132 diabetic/68 total/200

1 0.05 0.5908 132 0 132

1 0.01 0.5151 112 35 147

1 0.005 0.5129 109 38 147

1 0.001 0.5291 106 39 145

2 0.05 0.5729 131 2 133

2 0.01 0.5047 112 36 148

2 0.005 0.5098 111 36 147

2 0.001 0.5762 110 32 142

3 0.05 0.5640 130 9 139

3 0.01 0.5005 112 36 148

3 0.005 0.5017 109 38 147

3 0.001 0.6515 107 32 139

4 0.05 0.5587 130 12 142

4 0.01 0.4967 113 35 148

4 0.005 0.4966 111 37 148

4 0.001 0.6768 109 34 143

5 0.05 0.5552 130 14 144

5 0.01 0.4946 113 35 148

5 0.005 0.4968 110 37 147

5 0.001 0.6685 106 31 137

6 0.05 0.5526 130 15 145

6 0.01 0.4931 114 36 150

6 0.005 0.4963 111 37 148

6 0.001 0.7096 101 35 136

7 0.05 0.5508 130 16 146

7 0.01 0.4920 114 36 150

7 0.005 0.4953 111 37 148

7 0.001 0.7498 106 34 140

8 0.05 0.5493 130 16 146

8 0.01 0.4911 114 36 150

8 0.005 0.4960 111 36 147

8 0.001 0.7079 103 35 138

9 0.05 0.5481 130 17 147

9 0.01 0.4904 114 36 150

9 0.005 0.4948 111 37 148

9 0.001 0.7977 102 31 133

10 0.05 0.5471 130 17 147

10 0.01 0.4899 114 35 149

10 0.005 0.4949 111 37 148

10 0.001 0.7613 105 34 139

15 0.05 0.5441 129 19 148

15 0.01 0.4884 114 35 149

15 0.005 0.4942 111 37 148

15 0.001 0.7086 108 36 144

Table 6.13: (Pima Indian problem) 10-fold cross-validation results of training different

feedforward networks.



CHAPTER 6. RESULTS 175

score

#hidden nodes

20100

0.48
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Figure 6.3: (Pima Indian problem) A graph showing how the minimum cross-validation

score decreases with increasing number of hidden nodes.

hidden nodes. Thus the choice of a near-optimal network with fewer hidden nodes is a

reasonable compromise.

The final network was obtained by training a 5 hidden node MLP on the 200 training

patterns using a weight decay coefficient of 0:01. Out of the 332 test patterns, 201 out

of the 223 non-diabetic patterns (� 90%) were classified correctly, and 66 out of the 109

diabetic patterns (� 61%) were classified correctly. This is a total of 267=332, so the final

classification performance of the network was estimated to be � 80%. Figure 6.4 shows a

plot of the output of the network for each pattern in the test set. This indicates the amount

of overlap between the two classes.

In previous attempts with this dataset, [Rip96] found that no MLP of any number of hidden

nodes had a classification error rate less than that obtained using logistic regression, and

[Tar98] found that 6 hidden nodes were optimal. However the latter used a different

partitioning of the dataset. Despite the differences in the number of hidden nodes used by
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Figure 6.4: (Pima Indian problem) Output from the final network. The circles/crosses are

patterns from the test set labelled with/without diabetes.

[Rip96], [Tar98], and here, the test error rates are almost identical, being 19:8%, 22:7%,

and 19:6% respectively.

It is interesting to note that the weights associated with each hidden node in the final net-

work were almost identical. Table 6.14 shows the weights and offsets. The similarity

between the values suggests that there is only a slight curve in the classification boundary

(if the weights associated with each hidden node were exactly the same then the classifi-

cation boundary would be a hyperplane).

6.4.2 Extracting a rule-base

The MLP was linearised to a maximum error of H = 0:05. This divided each hidden node

sigmoid into 7 segments with a linearisation error of 0:0282. The total number of cells was

7

5

= 16807, but only 5806 of these were found to be boundary cells. These boundary cells

form the R1 representation. Comparative safety was then set to 1.0, and the algorithm to
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Input weights Input offsets

-.066193 -.0195000 -.00422054 -.003722342 -.04452875 -1.0092886 -.0269058 6.01921926

-.066201 -.0194990 -.00421619 -.003722757 -.04452056 -1.0094054 -.0269042 6.01876114

-.066199 -.0194989 -.00421567 -.003723655 -.04452385 -1.0094235 -.0269026 6.01879478

-.066195 -.0195002 -.00422257 -.003720833 -.04452526 -1.0092286 -.0269086 6.01925470

-.066203 -.0194996 -.00422025 -.003720169 -.04451626 -1.0092859 -.0269092 6.01891021

Output weights Output offset

-1.04758128 -1.04751708 -1.04753306 -1.04757258 -1.04751323 2.00389063

Table 6.14: (Pima Indian problem) Weights and offsets in the final MLP. The similarity between the values suggests that the function is gently curved.
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Axis-aligned Euclidean City-block

Seed sample (10000) 59% 72% 95%

New sample (10000) 52% 69% 94%

Test data (332) 55% 70% 94%

Table 6.15: (Pima Indian problem) Effectivenesses of 2000 rules of each of the three rule

types.

Number of rules Effectiveness

Before After Before After

2000 1759 94% 94%

1759 50 95% 95%

50 15 94% 94%

15 6 94% 93%

15 5 94% 92%

15 4 93% 91%

15 3 94% 90%

15 2 94% 87%

Table 6.16: (Pima Indian problem) Optimising the parsimony of the city-block rule-base.

The table shows the effectiveness on a sample of 10000 patterns both before and after

each optimisation.

form the R2 representations was iterated 200 times to obtain simplexes describing both

the diabetes and non-diabetes regions. Only 1101 out of the possible 5806 boundary cells

were used, and the simplexes were found to cover 9690 patterns from a sample of 10000.

There are two reasons for the incomplete coverage: non-zero linearisation error; and the

fact that the two R2 representations did not use all the boundary cells. The first of these

is a limitation of the linearisation method (chapter 4), and the second is a drawback of the

R

1 to R2 conversion algorithm (section 5.3).

Using a sample of 10000 patterns, 1000 rules of each type and for each class were gen-

erated to form three rule-bases. Table 6.15 gives the effectiveness of these rule-bases on

the sample used to seed the rules, a new sample of 10000 patterns, and the test data. As

with the heart disease dataset, the city-block rules are much more effective than either eu-

clidean or axis-aligned rules. Hence only the city-block rule-base was further optimised

for parsimony. This was achieved using the same method as before (described in 6.2.1).

Table 6.16 gives the effectiveness of each increasingly parsimonious rule-base.

Placing a strong weight on maximising parsimony, the rule-base with only 2 rules was
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Rule 1: DIABETES if

npreg -27.617 10

glu -93.757 176

bp -433.36 86

skin -491.18 23

bmi -41.062 35.9

ped -1.8113 0.883

age -67.949 50

Rule 2: NO DIABETES if

npreg 0 +39.166

glu 82 +132.96

bp 69 +614.63

skin 21 +696.5

bmi 33.4 +58.232

ped -0.127 +2.5687

age 17 +96.365

Table 6.17: (Pima Indian problem) The final two city-block rules extracted from the feed-

forward network. They are guaranteed to give the same classification as the network and

cover approximately 86% of the test patterns (see table 6.18).

Not diabetic Diabetic Total

rule-base effectiveness 200/223 � 90% 87/109 � 80% 287/332 � 86%

rule-base accuracy 189/200 � 95% 51/87 � 59% 240/287 � 84%

network accuracy 201/223 � 90% 66/109 � 61% 267/332 � 80%

comparative accuracy 225/225 � 100% 62/62 � 100% 287/287 � 100%

Table 6.18: (Pima Indian problem) The performance of the two city-block rules shown in

table 6.17 on the 332 examples in the test set.

selected as the final explanation of the network. These 2 rules are shown in table 6.17, and

their performance is shown in table 6.18. The latter table shows the effectiveness of the

rule-base, the accuracy of the rule-base, the accuracy of the network, and the comparative

accuracy, all computed using the 332 examples in the test set. Note that the accuracy of

the rule-base is higher than the accuracy of the feed-forward network because the rules

do not classify every test pattern. Note also that the comparative accuracy is necessarily

100% because the comparative safety was set to 1:0.
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Comment on prototype patterns

Although the prototype patterns in the city-block rules belong to a very definite class,

they may not be very likely to occur. There is a simple geometric reason for this property:

the further the rule prototype pattern is from the class boundary, the more effective the

rule antecedent region will be. This explains certain characteristics of the prototypes in

the results given above. For example, the prototype value of ped in the second rule

shown in table 6.17 is negative, even though the value of ped is always positive in all of

the available data (see table 6.12). Similarly, the prototype age is 17, compared with the

smallest value in the dataset of 21. Thus this prototype “no diabetes” pattern is on the edge

of normality. Similar examples can be found in the heart disease problem (the prototype

value of vessel in rule 2 of table 6.5 is -1, compared with a minimum value of 0 found

in the dataset), and in the next problem to be considered. In short, the prototype patterns

have a large conditional class probability, but tend to occur in regions of low unconditional

density.

6.4.3 The explanation

The final two rules are intuitively satisfying. The total contribution for the diabetes rule

will be smaller for subjects with a large number of pregnancies, large glucose concentra-

tion, high blood pressure, large skin fold thickness, high body mass index, high diabetes

pedigree function, and of a more mature age. The converse is true of the no diabetes rule.

The contributions plot of the two rules are shown in figure 6.5. These suggest that neither

blood pressure nor skin fold thickness are critical in determining diabetes. They also

suggest that glucose is an important variable because it has a large spread of contributions.

Finally, an explanation of why a particular pattern should be classified as belonging to

the diabetes class is given in table 6.19. This shows the contribution arising from each

variable, and how the pattern could change such that the same or the opposite classification

would result.
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Figure 6.5: (Pima Indian problem) Contributions from each variable in each rule over all

332 patterns in the test set. Random jitter has been added both vertically and horizontally

to separate co-incident points.
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Rule 1: DIABETES if ** activated **

pattern contribution condition

npreg 6 0.1448 -27.617 10

glu 148 0.2986 -93.757 176

bp 72 0.0323 -433.36 86

skin 35 0 -491.18 23

bmi 33.6 0.0560 -41.062 35.9

ped 0.627 0.1413 -1.8113 0.883

age 50 0 -67.949 50

TOTAL CONTRIBUTION = 0.6731

Rule 2: NO DIABETES ** not activated **

pattern contribution condition

npreg 6 0.1532 0 +39.166

glu 148 0.4964 82 +132.96

bp 72 0.0049 69 +614.63

skin 35 0.0201 21 +696.5

bmi 33.6 0.0034 33.4 +58.232

ped 0.627 0.2935 -0.127 +2.5687

age 50 0.3424 17 +96.365

TOTAL CONTRIBUTION = 1.3140

Table 6.19: (Pima Indian problem) Explanation of why a given pattern is assigned to the

diabetes class.
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Axis-aligned Euclidean City-block

New sample (10000) 67% 85% 100%

Original data (270) 68% 83% 100%

Table 6.20: (Pima Indian problem) Effectiveness of the three different rule-bases, each

containing 1000 rules per class, extracted with a comparative safety of 0:67.

6.4.4 The effects of decreasing comparative safety

In an attempt to obtain more effective rules, the extraction procedure was repeated with a

comparative safety less than unity. Figure 6.4 was used to decide by how much compara-

tive safety could be acceptably reduced. Notice how the distribution of classes is different

from those of the heart disease dataset, shown in figure 6.1. In particular, there is more

overlap between the classes and also fewer patterns at the extremes with probabilities

close to 0 or 1. Hence it was decided to use a narrower dead-band of 0:4 to 0:6. This is

achieved (see figure 3.16 on page 81) by a comparative safety of 0:67.

The results are shown in table 6.20. These compare favourably with the previous results

obtained using unity comparative safety (table 6.15). The city-block rulebase was further

optimised for parsimony, and the performance of the resulting two city-block rules is

shown in table 6.21. Compared with the original two city-block rules (table 6.18), the

effectiveness has increased from 86% to 93%, the accuracy has dropped from 84% to

80%, and the comparative accuracy has dropped from 100% to 96%.

The same procedure was also used to obtain the most effective two axis-aligned and eu-

clidean rules with a comparative safety of 0:67. The two axis-aligned rules were found

to have an effectiveness of 33% and the two euclidean rules an effectiveness of 58%.

Thus on this dataset, reducing comparative safety does not make these type of rules viable

alternatives to city-block rules.

6.5 Dataset 3: Breast Cancer

The purpose of this dataset is to predict whether a tissue sample taken from a patient’s

breast is malignant or benign. The data was collected at the University of Wisconsin
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No heart disease Heart disease Total

rule-base effectiveness 214/223 � 96% 95/109 � 87% 309/332 � 93%

rule-base accuracy 203/214 � 95% 45/95 � 47% 248/309 � 80%

network accuracy 201/223 � 90% 66/109 � 61% 267/332 � 80%

comparative accuracy 242/242 � 100% 56/67 � 84% 298/309 � 96%

Table 6.21: (Pima Indian problem) The performance of two city-block rules extracted

with comparative safety of 0:67, estimated using the 322 examples in the test set.

Ordered variable Code Values

Clump Thickness thickness 1 - 10

Uniformity of Cell Size size 1 - 10

Uniformity of Cell Shape shape 1 - 10

Marginal Adhesion adhesion 1 - 10

Single Epithelial Cell Size epithelial 1 - 10

Bare Nuclei bare 1 - 10

Bland Chromatin chromatin 1 - 10

Normal Nucleoli normal 1 - 10

Mitosis mitosis 1 - 10

Table 6.22: (Breast cancer problem) Description of the variables in the dataset.

Hospitals, Madison. Each pattern consists of the results from 9 visual assessments of

nuclear features of fine needle aspirates, see table 6.22. Each assessment is scored with a

number in the interval 1 to 10, with value 1 referring to a normal state and 10 to a most

abnormal state. Malignancy is determined by taking a tissue sample from the patient’s

breast and performing a biopsy on it. A benign diagnosis is confirmed by biopsy or by

periodic examination, depending on the patient’s choice. There are a total of 699 patterns;

458 of these correspond to benign tissue samples and 241 to malignant tissue samples.

In 16 patterns, the results from the bare nuclei test were missing. The simple strategy of

substituting the mean (evaluated over the remaining 683 patterns) was used to eliminate

these missing values.

An early subset of the data was analysed using the FACT classifier, [WTLV87], [WTL88],

[WTL89], with linear programming methods, [MW90], and using a multisurface method

of pattern separation, [WM90]. In addition this data formed one of the datasets in an

empirical comparison of decision trees and other classification methods, [LLS97], and
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is also found in the Proben1 database, [Pre94]. The data may be obtained electronically

from [Pre94] or the UCI machine-learning database collection, [MA95].

Three of the rule extraction papers reviewed in chapter 1 used this dataset: Taha and Ghosh

(page 8) produced 5 rules; Bologna (page 10) produced 8 rules; and Goodman et al (page

17) produced 11 rules. All three had approximately the same accuracy as a standard MLP

(� 96%). Note that the rules produced by Taha and Ghosh classify all patterns in the

dataset but are not guaranteed to give the same classification as the network, and that both

Bologna and Goodman et al used non-standard networks.

6.5.1 Training the feed-forward network

An MLP with the 9 ordered variables as inputs and a single output to estimate the condi-

tional probability of cancer, P (cancer jx), was trained as before.

The 10-fold cross-validation method to select network architecture was used on 690 of

the 699 patterns (9 of the patterns were not used during cross-validation). Table 6.23

summarises the results of these experiments. Figure 6.6 shows a graph of the minimum

scores obtained by networks with increasing numbers of hidden nodes. According to this

plot, approximately 75% of the total decrease (over the range tested) occurs when the

number of hidden nodes is increased from 1 to 5.

The final network was obtained by training a 5-hidden node MLP on all the data using a

weight decay coefficient of 0:0005. Figure 6.7 shows a plot of the output of the network

for each pattern, thus indicating the distribution of class probabilities and the amount of

class separation achieved. The weights associated with each hidden node in the network

are shown in table 6.24. Note that the weights are all different, which suggests that the

function is different from that which would be produced by a network with only a single

hidden node.
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# correct per class

#hidden nodes weight decay score non/438 cancer/237 total/690

1 0.0005 0.1121 437 227 664

1 0.001 0.1116 438 228 666

1 0.005 0.1339 440 227 667

2 0.0005 0.0964 437 227 664

2 0.001 0.0954 440 227 667

2 0.005 0.1157 440 227 667

3 0.0005 0.1001 437 227 664

3 0.001 0.0960 439 226 665

3 0.005 0.1088 440 227 667

4 0.0005 0.0975 439 225 664

4 0.001 0.0951 441 226 667

4 0.005 0.1051 441 227 668

5 0.0001 0.1609 436 217 653

5 0.0005 0.0907 439 227 666

5 0.001 0.0938 441 226 667

6 0.0001 0.1644 438 214 652

6 0.0005 0.0883 438 227 665

6 0.001 0.0935 441 226 667

7 0.0001 0.1355 439 216 655

7 0.0005 0.0865 439 226 665

7 0.001 0.0926 441 226 667

8 0.0001 0.1454 440 216 656

8 0.0005 0.0867 438 227 665

8 0.001 0.0925 441 226 667

9 0.0001 0.1497 442 219 661

9 0.0005 0.0858 438 227 665

9 0.001 0.0924 441 226 667

10 0.0001 0.1369 440 219 659

10 0.0005 0.0852 438 227 665

10 0.001 0.0928 441 226 667

15 0.0001 0.1312 441 219 660

15 0.0005 0.0836 438 226 664

15 0.001 0.0924 441 226 667

Table 6.23: (Breast cancer problem) 10-fold cross-validation results of training different

feed-forward networks.
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Figure 6.6: (Breast cancer problem) A graph showing how the minimum cross-validation

score decreases with increasing number of hidden nodes.
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Figure 6.7: (Breast cancer problem) Output from the final network. The circles/crosses

are patterns labelled with/without cancer.
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Input weights Input offsets

-0.3725 -0.1983 -0.3065 -0.3011 -0.07477 -0.3736 -0.02311 -0.1305 -0.1389 5.050

-0.2579 -0.3288 -0.4353 -0.08009 -0.1009 -0.2339 -0.06337 -0.1537 -0.07568 4.633

-0.1973 -0.2423 -0.3992 -0.3236 -0.2385 0.1463 -0.1055 0.2184 -0.5143 7.914

-0.3600 0.3342 0.2832 0.2882 0.6734 -0.6489 -0.5063 -0.4555 -0.9057 3.668

-0.3921 0.1067 0.02008 -0.5751 -0.2079 -0.3165 -0.2352 -0.1151 -0.2494 5.305

Output weights Output offset

-2.604 -2.418 -3.398 -3.626 -2.715 6.6600

Table 6.24: (Breast cancer problem) Weights and offsets in the final MLP. The difference between the values suggests that the function is significantly

different from the function produced by a network with a single hidden node.



CHAPTER 6. RESULTS 189

Axis-aligned Euclidean City-block

Seed sample (10000) 65% 82% 92%

New sample (10000) 56% 78% 92%

Original data (699) 67% 82% 93%

Table 6.25: (Breast cancer problem) Effectivenesses of 2000 rules of each of the three

rule types, estimated on the seed sample, a new sample, and the original data.

6.5.2 Extracting a rule-base

The MLP was linearised to a maximum error of H = 0:1. This divided the hidden node

sigmoids into 7; 7; 10; 10; 8 segments, producing a linearisation error of 0:0815. The total

number of cells was 39200, but only 10580 of these were found to be boundary cells (the

R

1 representation). Comparative safety was set to 1:0, and the algorithm to form the R2

representations (see section 5.3) was iterated 100 times to obtain simplexes describing

both the cancer and non-cancer regions. Only 5294 out of the possible 10580 boundary

cells were used, and the simplexes were found to cover 9866 patterns from a sample of

10000.

Rule-bases of each type, each containing 1000 rules per class were then generated using

samples of 10000 patterns. Table 6.25 gives the effectiveness of these rule-bases on three

different samples: the sample used to seed the rules, a new sample of 10000 patterns, and

the original data.

As with the heart disease and Pima Indian datasets, the city-block rules are much more

effective than either euclidean or axis-aligned rules. Hence only the city-block rule-base

was further optimised for parsimony. This was achieved with the same method as used

on the previous two datasets. Table 6.26 gives the effectiveness of each intermediate rule-

base.

The five most effective city-block rules are shown in table 6.27, and their performance is

shown in table 6.28. In comparison, the two most effective city-block rules are shown in

table 6.29, and their performance is shown in table 6.30. Notice that the two most effective

rules are the also included amongst the five most effective rules. Selecting one of these

rule-bases for the final explanation depends simply on the degree of parsimony required.
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Number of rules Effectiveness

Before After Before After

2000 1773 91% 91%

1773 50 91% 88%

50 15 88% 87%

15 6 86% 83%

15 5 87% 83%

15 4 86% 81%

15 3 86% 79%

15 2 86% 74%

Table 6.26: (Breast cancer problem) Optimising the parsimony of the city-block rule-base.

The table shows the effectiveness on a sample of 10000 patterns both before and after each

optimisation.

The effectiveness gained from the extra three rules is not insignificant, and increases from

� 80% for the two rules to � 86% for the five rules. However for the purposes of

illustration it was decided to select the two rule explanation for further discussion.

6.5.3 The explanation

Recall that all variables take values between 1 and 10, with 1 referring to a normal state

and 10 to the most abnormal state. It is not surprising therefore that the no cancer proto-

type consists entirely of small values. Notice also that there are bounds on both sides of

some of the components of the rule protoype pattern. This implies that the rule antecedent

region is bounded on both sides, and so the classification boundary is most definitely

curved.

The contributions plots are shown in figure 6.8. The presence of some large contributions

in rule 2 implies that it only requires a couple of variables with large values to prevent the

rule from being activated. This agrees with the crude intuitive belief that abnormal states

are unlikely to be non-cancerous.

Finally, table 6.31 gives an example explanation of why a pattern should be assigned to

the cancer class.
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Rule 1 : CANCER if

thickness -15.691 9

size -28.063 6 +28.928

shape -18.633 5 +38.89

adhesion -12.113 4 +38.117

epithelial -31.512 3 +15.056

bare -13.446 10.2

chromatin -16.685 5

normal -20.107 9

mitosis -8.4274 2

Rule 2 : NO CANCER if

thickness 4 +8.1906

size -74.826 1 +22.025

shape 0 +12.383

adhesion 2 +8.6354

epithelial -15.375 3 +17.269

bare -138.55 0.5 +7.2099

chromatin 1 +12.837

normal -37.533 1 +12.247

mitosis 1 +6.8058

Rule 3 : CANCER if

thickness -12.89 5

size -13.823 9 +53.713

shape -8.394 9 +163.93

adhesion -8.4318 9

epithelial -14.287 6 +46.75

bare -14.074 8.6 +25.389

chromatin -17.528 8

normal -26.58 8 +16.03

mitosis -5.9996 1

Rule 4 : CANCER if

thickness -7.8866 8

size -18.933 4 +24.734

shape -8.2821 6 +45.501

adhesion -10.842 3 +39.925

epithelial -29.016 6 +10.384

bare -8.6321 10

chromatin -9.4427 6

normal -14.101 4 +43.79

mitosis -3.2004 1

Rule 5 : NO CANCER

thickness 1 +11.681

size 0 +15.746

shape 1 +10.678

adhesion 1 +10.958

epithelial -582.2 2 +22.819

bare -0.8 +13.246

chromatin 1 +25.425

normal -431.24 -1 +28.939

mitosis 1 +12.385

Table 6.27: (Breast cancer problem) The five most effective city-block rules extracted

from the feed-forward network. They are guaranteed to give the same classification as the

network and cover approximately 86% of the patterns in the dataset.
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No cancer Cancer Total

rule-base effectiveness 438/458 � 96% 165/241 � 68% 603/699 � 86%

rule-base accuracy 435/438 � 99% 165/165 � 100% 600/603 � 100%

network accuracy 447/458 � 98% 237/241 � 98% 684/699 � 98%

comparative accuracy 435/435 � 100% 168/168 � 100% 603/603 � 100%

Table 6.28: (Breast cancer problem) The performance of the five most effective city-block

rules shown in table 6.27 on the 699 examples in the dataset.

Rule 1 : CANCER if

thickness -15.691 9

size -28.063 6 +28.928

shape -18.633 5 +38.89

adhesion -12.113 4 +38.117

epithelial -31.512 3 +15.056

bare -13.446 10.2

chromatin -16.685 5

normal -20.107 9

mitosis -8.4274 2

Rule 2 : NO CANCER if

thickness 4 +8.1906

size -74.826 1 +22.025

shape 0 +12.383

adhesion 2 +8.6354

epithelial -15.375 3 +17.269

bare -138.55 0.5 +7.2099

chromatin 1 +12.837

normal -37.533 1 +12.247

mitosis 1 +6.8058

Table 6.29: (Breast cancer problem) The final two city-block rules extracted from the

feed-forward network. They are guaranteed to give the same classification as the network

and cover approximately 80% of the patterns in the dataset.

No cancer Cancer Total

rule-base effectiveness 430/458 � 94% 126/241 � 52% 556/699 � 80%

rule-base accuracy 428/430 � 100% 126/126 � 100% 554/556 � 100%

network accuracy 447/458 � 98% 237/241 � 98% 684/699 � 98%

comparative accuracy 428/428 � 100% 128/128 � 100% 556/556 � 100%

Table 6.30: (Breast cancer problem) The performance of the two city-block rules shown

in table 6.29 on the 699 examples in the dataset.
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Figure 6.8: (Breast cancer problem) Contributions from each variable in each rule over all

699 patterns in the dataset. Random jitter has been added both vertically and horizontally

to separate co-incident points.



CHAPTER 6. RESULTS 194

Rule 1: CANCER if ** activated **

pattern contribution condition

thickness 8 0.0637 -15.691 9

size 7 0.0346 -28.063 6 +28.928

shape 5 0 -18.633 5 +38.89

adhesion 10 0.1574 -12.113 4 +38.117

epithelial 7 0.2657 -31.512 3 +15.056

bare 9 0.0892 -13.446 10.2

chromatin 5 0 -16.685 5

normal 5 0.1989 -20.107 9

mitosis 4 0 -8.4274 2

TOTAL CONTRIBUTION = 0.8096

Rule 2: NO CANCER if ** not activated **

pattern contribution condition

thickness 8 0.4884 4 +8.1906

size 7 0.2724 -74.826 1 +22.025

shape 5 0.4038 0 +12.383

adhesion 10 0.9264 2 +8.6354

epithelial 7 0.2316 -15.375 3 +17.269

bare 9 1.1789 -138.55 0.5 +7.2099

chromatin 5 0.3116 1 +12.837

normal 5 0.3266 -37.533 1 +12.247

mitosis 4 0.4408 1 +6.8058

TOTAL CONTRIBUTION = 4.5806

Table 6.31: (Breast cancer problem) Explanation of why a given pattern is assigned to the

cancer class.
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6.5.4 The effects of decreasing comparative safety

The rule extraction procedure was repeated using a comparative safety less than unity to

see whether rules with a greater effectiveness could be obtained. Notice from figure 6.7

that there is considerable separation between the classes. However it was not thought

acceptable to classify patterns such that the estimated probability of the class is less than

0:3. Hence it was decided to use a dead-band of 0:3 to 0:7. This is achieved (see figure

3.16 on page 81) by a comparative safety of 0:43.

Table 6.32 gives the results from extracting three large rule-bases with a comparative

safety of 0:43, and table 6.33 gives the results of the best two city-block rules. Comparing

with the corresponding results for unity comparative safety (tables 6.25 and 6.33), it can

be seen that the performance of the city-block rules hardly changes. Hence there was

probably insufficient overlap between the two classes of this dataset for the reduction of

comparative safety to have an appreciable effect.

Finally, the effectiveness of the large rule-bases of axis-aligned and euclidean rules does

increase as a result of decreasing comparative safety. However the optimal two axis-

aligned and euclidean rules were still found to have relatively low values of effectiveness

(51% and 64% respectively). Thus the city-block rules are again undoubtedly the most

effective.
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Axis-aligned Euclidean City-block

New sample (10000) 69% 84% 95%

Original data (699) 78% 88% 95%

Table 6.32: (Breast cancer problem) Effectiveness of the three different rule-bases, each

containing 1000 rules per class, extracted with a comparative safety of 0:43.

No cancer Cancer Total

rule-base effectiveness 440/458 � 96% 140/241 � 58% 580/699 � 83%

rulebase accuracy 435/440 � 99% 139/140 � 99% 574/580 � 99%

network accuracy 447/458 � 98% 237/241 � 98% 684/699 � 98%

comparative accuracy 436/436 � 100% 144/144 � 100% 580/580 � 100%

Table 6.33: (Breast cancer problem) The performance of two city-block rules extracted

with a comparative safety of 0:43, estimated using the 699 examples in the dataset.



Chapter 7

Conclusions and future work

The first two sections of this final chapter provide a complete summary and discussion of

the work in this thesis. The last section suggests some directions for future work.

7.1 Overview of thesis and its contributions

The work in this thesis can be divided into two parts: a framework for explanation from

feed-forward network classifiers (chapters 2 and 3); and an implementation within this

framework (chapters 4 and 5). The former is a natural extension of the probabilistic

approach to classification. The latter is an algorithm based upon the well known principle

of linearising analytically intractable non-linear functions.

The comprehensive survey of the literature on explanation from neural networks given

at the beginning of the thesis showed that none of the published methods met all of the

following criteria:

1. a probabilistic framework;

2. an explanation produced from a standard feed-forward network trained using stan-

dard procedures;

197
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3. an explanation with a known relationship with the unexplained network-based clas-

sification;

4. an explanation consisting of only a small number of easily comprehensible rules

which cover a significant fraction of all data;

5. no restriction to datasets with only categorical variables.

The third property is particularly important; without it, the algorithm producing the ex-

planation is simply just another machine learning algorithm. This property is an essential

element to any claim that a network has been explained. A solution which meets the above

specification is the main contribution of this thesis.

A framework for explanation from feed-forward networks

The statistical perspective for solving the classification problem using feed-forward net-

works was outlined in chapter 2. It was shown that the decoupling of the probability

estimates from the making of decisions is important. Not only does this lead to a bet-

ter understanding of the classification problem, but it also paves the way for a better

understanding of the problems of explaining the classifications given by a feed-forward

network.

Chapter 3 provided the core framework for explanation. It began with a generalisation

of the popular axis-aligned rules into three types of rule, all based upon different dis-

tance metrics with respect to a prototype pattern. These three distances are city-block (the

weighted absolute sum of the differences between components), Euclidean (the weighted

sum of differences squared), and axis-aligned (the largest weighted difference between

component values). Of these three types of rule, the city-block rule was shown to have

the most suitable properties for describing the type of classifications provided by a feed-

forward network. This conclusion ws subsequently much strengthened by the results

presented in chapter 6. A key assertion of this thesis is that city-block rules are best for

overcoming the fundamental problem of explanation, namely that it not generally possible

exactly to describe the type of classification given by a feed-forward network using only a
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small number of simple rules. The reason for this is best understood geometrically: rules

in general describe simple regions of input space which cannot be used to reproduce the

relatively complex classification boundary defined by the network.

The first part of chapter 3 also showed how the rules for ordered variables can be rewritten

as rules for categorical variables. A process of evaluating the “distances” (or contribu-

tions) on the numerical codes used for each category within each categorical variable was

described. Since this re-writing is a simple process which can be carried out at the end of

rule generation, only the extraction of prototype-based rules for ordered variables need be

considered.

The second part of chapter 3 described a set of measures for assessing, understanding, and

specifying the differences between the rule-based explanation and the original network-

based classifier. These measures are parsimony (the simplicity of the rule-base), effective-

ness (the probability that the rule-base is used to classify a pattern), comparative accuracy

(the probability that the classification given by the rule-base is the same as that given by

the network), and comparative safety (the severity of the worst sub-optimal classification).

The last of these is arguably the most important because it indicates the most extreme

difference between the explanation and the network for any individual classification. In-

deed this importance is reflected in the fact that comparative safety was translated from

a measure of an explanation into a constraint in the optimisation of explanation. Thus

comparative safety regions were defined as the largest regions of input space containing

patterns which can all be assigned to a particular class within some specified comparative

safety. An approach to explanation was therefore constructed as follows: describe the

network-defined comparative safety regions using a small number of the prototype-based

rules such that the largest fraction of patterns are explained; in other words, ensure a given

comparative safety whilst maximising parsimony and effectiveness.
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An implementation

A possible implementation for extracting rules under the explanation framework present-

ed in chapters 2 and 3 was then constructed in chapters 4 and 5. This implementation

was based upon the piece-wise linearisation of the function defined by the feed-forward

network (an MLP). It was shown in chapter 4 that such a linearisation could easily be

achieved by linearising the sigmoid function associated with each hidden node. The

method described in chapter 5 took advantage of this approach to enable the comparative

safety regions to be described using the union of the intersections of cells and half-planes.

Although this cell/half-plane representation does not constitute an explanation, it is an

explicit representation of the classifications made by the network. A simplifying transla-

tion process applied to this first explicit representation produces a second representation

consisting of the union of intersections of the half-planes. It was then shown that it is

a relatively simple process to describe this second representation using a large number

of any of the three prototype-based rules. Simple heuristics were proposed to reduce the

number of rules in order to increase the parsimony of the explanation. The final number

of rules is then determined by the chosen parsimony/effectiveness trade-off. Clearly this

is a function of the particular classification problem being solved.

The new method of making explained classifications presented in this thesis was evaluated

on three non-artificial problems, the results of which are given in chapter 6. With all

three problems, parsimonious explanations (2 city-block rules) can describe a significant

fraction of all patterns (at least 80%) whilst ensuring that the network and the explanation

always give the same classification (maximum comparative safety). The application of

reduced comparative safety was not found to be necessary to generate explanations of the

three classifiers. This is almost certainly due to the appropriateness of the city-block rules

for describing the type of classification boundaries generated by multi-layer perceptron

networks.
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7.2 Discussion

This thesis has presented a solution to the problem of explaining a feed-forward network

classifier which has several significant advantages over the algorithms reviewed in the

opening chapter. Not least is the fact that the explanation has a known and controllable

relationship with the network. However another important reason for the success of the

extracted explanations is the fact that they use rules based upon the city-block “distance”

to a prototype. It has been shown, both in theory and in practice, that these city-block rules

are capable of indicating in a compact and intuitive way a significant fraction of those

patterns which the network assigns to each class. In addition, it has been shown that the

popular axis-aligned rules are fundamentally poor at describing the types of classification

boundaries produced by a feed-forward network classifier. Although the emphasis in this

thesis has been on explaining networks trained on datasets with ordered variables, this has

not prevented explanations from being generated with categorical variables.

It is now possible to be precise about the difference between the network explanation

algorithm presented in this thesis and the algorithms described in the literature review of

chapter 1. Decompositional and some pedagogical algorithms trade an unknown quantity

of comparative safety in order to maximise effectiveness and parsimony. In contrast, the

functional methods maximise comparative safety but use a type of rule which is inefficient

at describing the types of class boundaries generated by feed-forward networks. The latter

results in either an explanation of low parsimony or one of low effectiveness.

The main disadvantages of the new algorithm are that the implementation is currently

restricted to two classes, and that the linearisation approach prevents the application to

committees of networks. However these disadvantages need to be evaluated against the

fact that the system is fully integrated into a probabilistic framework, and that the expla-

nation has a controlled equivalence with the classifications given by the original network.

Finally, networks trained on problems containing both ordered and categorical variables

can be explained.



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 202

7.3 Future work

The following list provides some possible directions of research which would extend and

improve the work described in the previous chapters:

1. adapt the algorithm so that it can explain networks trained on problems involving

more than two classes;

2. assess the comparative safety of explanations extracted using other algorithms;

3. investigate the computational time required by the algorithm (suspected to be ap-

proximately exponential in the number of hidden nodes);

4. explore the possibilities of mixing different types of rule and targeting variables

with particularly strong semantics (equivalently, avoiding variables with less intu-

itive semantics, such as the pedigree function ped in the Pima Indian problem of

section 6.4 on page 172);

5. improve the piece-wise linearisation algorithm by taking into account the correla-

tions between the error terms (�
s

(y) in equation (4.14) on page 96), and thus obtain

a tighter error bound h
s

on the MLP function;

6. increase the parsimony of the explanation by exploiting freedom in regions of nov-

elty (see the Karnaugh-map analogy in section 3.5 on page 84, and also section

5.4.4 on page 150).
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Encoding categorical variables

This appendix proves that the matrix T
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where

�

k

=

+

r

k � 1

2k

; (A.2)

has the following properties:

1. the columns sum to zero,

2. the magnitude of every column is �
n

,

3. the Euclidean distance between any two columns is 1:0.

Proposition 1 is immeditately obvious from the construction of the matrix. Induction over

n is used to prove proposition 2. Assume that the magnitude of all the columns of T
k
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equal �
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Clearly the (magnitude)2 of the (k+1)

th column is also �2

k+1

, thus completing the induc-

tive step. The base case of T
2

is trivially true, thus proposition 2 is true by induction for

all k � 2.

Induction is also used to prove proposition 3. Assume that the euclidean distance between

all distinct columns of T
k

is equal to unity, then clearly the euclidean distance between

any of the first k columns of T
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is also equal to unity. Using the fact that all columns

have a magnitude �2
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This completes the inductive step. The base case of T
2

is trivially true because �
2

= 0:5,

hence proposition 3 is true by induction for all k � 2.
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Density estimation

A method similar to the suggestions given in Silverman [Sil96] was used to obtain a kernal

based estimate of the unconditional probability density. Each kernel consists of a product

of one-dimensional distributions, where a Gaussian distribution is used for each ordered

variable and an impulse distribution is used for each categorical variable. The following

equations make the structure of the model precise.

p(x) =

X

i

p(x j i)P (i) (B.1)

where the distribution of each kernel is given by

p(x j i) =

Y

j

p(x

j

j i) (B.2)

and the 1D kernel distributions are given by
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is a categorical variable

(B.3)

where n
j

is the number of categories in (categorical) variable x
j

.
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The parameters of the model are the kernel priors P (i), the ordered variances �2
ij

, the

categorical impulses P
ij

, and the centres �
ij

. These parameters are selected in the fol-

lowing way. The training data is partitioned into v folds and the patterns from the first

partition are used to position the centres of the kernels in the first model. Keeping these

centres fixed, the liklihood of p(x) is maximised (using expectation maximisation (EM)

[DLR77]) on the data in the remaining partitions, but constraining the kernel widths on

each dimension to be equal i.e. �

2

ij

= �

2

kj

and P

ij

= P

kj

for all i; k. This procedure

is repeated over all partitions to produce v models, and the output from these models is

averaged to produce the final density estimate.

This density model will have a kernel for every pattern in the training set. Note that in-

creasing the number of partitions tends to make the final distribution “broader”. This is

because each of the v intermediate models tries to account for a relatively large amount

of data with only a small number of kernels. The number of partitions may be selected

by plotting the marginal distributions and comparing with histograms of the original da-

ta. Obviously a good density model will produce marginal distributions which are very

similar to the marginal histograms; unfortunately the reverse is not true.
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Justifying a novelty threshold

Normality can be defined as the smallest volume which encloses some fraction r of the

unconditional distribution p(x). The following proof shows that this volume N is defined

by some threshold t on the unconditional distribution.

By definition,

Z

N

p(x)dx = r; (C.1)

and we wish to show that the minimum volumed N is defined by

N = fx j p(x) � tg; (C.2)

for some t.

Consider another volume N
0

which also covers 100r% of the distribution but which con-

tains some points (A)bove the threshold and some points (B)elow the threshold,

Z

N

0

p(x)dx = r; (C.3)

N

0

= A[ B (C.4)
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where

p(x) � t for every x 2 A (C.5)

p(x) < t for every x 2 B: (C.6)

Note thatA = N\N \A becauseA � N , and also thatA and B are disjoint, A\B = ;.

Hence

Z
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dx+
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However we will now show that

�

Z

N\A

dx+

Z

B

dx � 0: (C.8)

This clearly implies the desired result that N has the smallest volume covering 100r% of

the unconditional distribution.

Using the same identities as before,

Z

N
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p(x)dx =
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p(x)dx �
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p(x)dx +
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However

Z
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p(x)dx = r

Z

N

p(x)dx = r (C.10)
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and because of the properties of A and B,

Z

N\A

p(x)dx �
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N\A

rdx
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p(x)dx <

Z

B

rdx: (C.11)

So equation (C.9) becomes

�

Z

N\A

rdx+

Z

B

rdx � 0: (C.12)

Since r is non-zero, this implies the required condition, equation (C.8)
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Proofs of the rule fraction formulae

This appendix outlines the proofs of the formulae used to calculate the fraction of space

covered by each of the three types of rule when pushed up against different types of

boundary. These formulae are quoted in tables 3.1 and 3.2 on page 67.

The basic volumes

This section gives the volumes of each of the three types of rule antecedent region.

Volume of a city-block region

First consider the volume defined by the positive “quadrant” and

X

i

U

(x

i

)x

i

� l; (D.1)

where
U

is the unit step function. Let this volume be V
d

(l) in d dimensions, and define I
d

by

V

0

d

(l) = I

d

l

d

: (D.2)
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Observe that
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where the constant integration 
d

is found to be zero by evaluating at l = 0. Since I(2) =

0:5 it is clear that I
d

= 1=d! and hence

V
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d
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: (D.4)

Now consider the volume of a city-block antecedent region defined by the positive quad-

rant and the condition

X

i

U
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� �)(x

i

� �) � l; (D.5)

where 0 � � � l. Observe that each of the combinations for which the different terms

in this condition are non-zero represent disjoint volumes. Hence using the result given by

equation (D.4),
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Volume of a Euclidean region

It is shown in [Bis95] that the volume of a hyper-sphere of radius r in an even number of

dimensions, d, is given by

(2�)

d=2

r

d

d(d� 2) : : : 2

:
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Hence the volume of a hyper-sphere in only the positive “quadrant” is given by
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(r) =

(

�

4

)

d=2
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(
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: (D.7)

Volume of an axis-aligned region

The volume of an axis-aligned region with dimension l is given by

V

d

(l) = l

d

: (D.8)

The relative volumes

This section gives the fraction of space covered by each of the three types of region when

pushed up against either a “45Æ” hyper-plane corner or hyper-spherical corner. The trivial

cases are ommitted.

Axis-aligned region against a hyper-plane corner

The space to be covered is given by
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Hence the dimension of the largest axis-aligned region within this space is

l
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So using results (D.4) and (D.8) the fraction of space covered is given by
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Euclidean region against a hyper-plane corner

The space to be covered is given by

x
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i
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i

� l; (D.12)

and so the radius r of the largest hyper-sphere “quadrant” within this space is given by

r =

l

p
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Hence using results (D.4) and (D.7) the fraction of space covered is given by
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City-block region against a hyper-sphere corner

The space to be covered is given by
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and define the city-block region by
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Note that for convenience the last inequality is normalised to be less than 1:0 rather than l.

The configuration of the largest hyper-sphere just touching the city-block region is when
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all the x
i

equal �, except for one x
i

which equals �+ 1. Hence
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Thus using results (D.6) and (D.7), the fraction of space covered is given by

� =

P

i=0

d

�

d

i

�

�

i

1

(d�i)!

(�=4)

d=2

r

d

(d=2)!

=

d!(d=2)!

(�=4)

d=2

1

r

d

X

i

1

((d � i)!)

2

i!

�

i

: (D.18)

Maximising this with respect to � gives

dr

d�1

d�+ 1

r

X

i

B

i

�

i

= r

d

X

i

B

i

i�

i�1 (D.19)
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This may be re-written
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which may be iterated to obtain a numerical solution for the optimal �. This may then be

substituted into equations (D.17) and (D.18) to obtain a numerical value for the fraction

of space covered.
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Axis-aligned region against a hyper-sphere corner

The space to be covered is given by

x

i

� 0 for all i

X

i

x

2

i

� r

2

; (D.22)

and so the dimension of the largest axis-aligned region within this space is

l =

r

p

d

: (D.23)

Using the results (D.8) and (D.7), the fraction of space covered is

� =

l

d

(�=4)

d=2

r

d

(d=2)!

=

(d=2)!

(d�=4)

d=2

: (D.24)
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