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1 Introduction

Independent Component Analysis4) is a solution to the problem of determining the matrix
which will unmix the (unknown) linear combination of (unkmn) independent sources. The
only information available is a set of observations of thedirly combined signals. This problem
is also known as Blind Separation of Sourcess).

The need for blind separation of sources arises in divergkcations, including

e Speech separation. Here the samples consist of several speech signals thabkawdin-
early mixed together, and the requirement is to separate biaek into individual speakers
[3]. Such a situation occurs for example in a teleconfergmenvironment, and also the
infamous “cocktail party”.

e Multisensor biomedical records. Here the samples consist of recordings made by a multi-
tude of sensors used to monitor biological signals. For glanthe requirement may be to
separate the heartbeat of a fetus from that of the motheg dgfierent leads of an Electro-
cardiographcag) [6]. Another example is removing artifacts such as eye mam, pe-
riodic muscle spiking, line noise, and cardiac contamoratrom Electroencephalograph
(EeG) recordings [10].

e Exploratory data analysis and visualisation. ICA is closely related (but distinct from)
principal component analysis and factor analysis. It idpldy very similar to projection
pursuit.

There are several good on-linea resources: [2] contains an extremely comprehensive list
of individuals and publications; [8] provides an introdoat some demonstrations, and some
EEG analysis; and [12] provides a list of individuals, the FE®IMATLAB package (now in
/users/tcc/matlab/fastiCA ), SOmeEEG analysis, and details of their fixed-point algo-
rithm.

2 Approaches

There are several approachesaa, including: maximising a suitable likelihood function; ria
imising entropy [3]; and maximising a criterion for staitst independence [7, 1]. The maximum



entropy approach has been shown several times to be equitaie maximum likelihood ap-
proach [5]; both are different from maximising statisticedependence [9].
We will concentrate on the maximum likelihood approach.

2.1 Maximum Likelihood IcA

Let the vectos represents: independent sources (or latent variables), the squaregimatrix
A represents the linear mixing of the sources, and the vectepresents the: components of
the observed signals. The model is simply

x = As
= HP(Si) (1)

and makes the following assumptions: thererarendependent sources andobservations; the
mixing matrix is invertible; the components®oére independent and identically distributed; there
is no “noise” term; there is no time dependence, so each wdisen is independent of previous
and future observations and the mixing matrix is constaetstgnals are instantaneously mixed.
For simplicity we have also made the assumption that thelligionsp(s;) have no parameters.
In particular we will assume that they have zero mean and d,foually unit, variance.

Using the property(s) = |det A|p(x), the average log likelihood of a sample &finde-
pendent observations is then
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=log|det A7 + — ZZlogp (2)
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wheré s; = A lz;.

So to fit the model, the average log likelihoddis maximised with respect to the param-
etersA~!. Differentiating with respect to\~! provides the gradient information required for
optimisation,
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The standard index convention implies that there is an irit@ummation ovey.



This may be written more simply without the indexes,
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where thei" component of the activation functiahis

9 1ogp(s?). (5)

¢Z(Sn) = s,

2.2 Choosing a sourcedistribution

The maximum likelihood approach taA requires the form of the source distributigns;) to
be specified/assumed. The Gaussian and the logistic ditmis are considered below.
2.2.1 Gaussian sources

Although the most obvious choice for the source distrilgiassuming Gaussian sources fails
because the unmixing matrix is only recoverable upto aimtafo see this, consider that if

1 s
p(si) = \/—2_7r exp (—5) (6)
then equation (5) becomes
¢i(si) = —si, (7)
and hence the gradient given by equation (4) becomes
N
o= (1 - %;s")(s”)T) A", ®

This gradient is the zero for any mateék! which spheres/whitens/decorrelgtdee datax"}V_,.
Stacking all the observations by column in the maXixand using eigenvector/eigenvalue de-
composition,

XX' =vDVT, 9)

it is easily verified that
s=A"'x  whereA™!' = RN'?D1/2V7 (10)

makes equation (8) equal to zero for any malixwith the propertyRR? = 1. An intuitive
way of understanding the presence of an arbitrary rotai®a consider that decorrelation is the
transformation which makes the projected variance in afladions equal to unity; it is clear that
this property is unchanged by further rotations.

To conclude, the unmixing matrix resulting from assumingi§€aan sources is arbitrary up
to a rotation, and therefore clearly unhelpful. We can ordpéithat the sources really aren’t
(time) independent Gaussians !

2Decorrelate is probably the preferred term; such data malpok anything like a sphere.
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2.2.2 Logistic sources

Observe that the sigmoid function is a valid cumulative dgrisnction because it monotonically
increases frond.0 to 1.0 as the input increases fromoo to +o0o. Thus modelling the sources
with logistic distributions can be written

P(s; < a) =sig(a)
p(si) = sig(a)(1 — sig(a)) (11)
where
1

sig(a) = s (12)

This distribution has a variance é} and so must be scaled to make the variance equal to unity.
However it is conveniedtto absorb this scaling into the unmixing matrix.

Whenp(s;) is the logistic defined above, it is easy to show that the atitim function, equa-
tion (5), has the following simple form:

Pi(s) = 1 — 2sig(sy), (13)
and hence the gradient, equation (4), becomes

N

aiL— _ (1 - %Z(l - 2sig(s”))(s")T> AT (14)

n=1

3 MATLAB code

Minimum functionality MATLAB code which implements the miaxum likelihood method of
ICA with logistic sources is shown in figure 1. Note that the fiorcfminu , which performs
BFGS quasi-Newton optimisation, is in the optimisationltbos®. This takes the names of two
functions, one which evaluates the minimand, and one whialuates its gradient. These func-
tions are given in figures 2 and 3 respectively.

4 Twoillustrative examples

A simple test of the above method is to generate sourceSiatan the assumed source distri-
butions (in this case, independent logistics), make a sebsérvationX by linearly combining

3Convenient because it is simple. Actually it is probably whiat we want because the likelihood then changes
with the variance of the sources.

4Type help optim  for information on MATLAB’s optimisation toolbox. Alterrtively with MATLABS
use the commandelpwin . On-line documentation is also available /data/apps/matlab-5/help/
helpdesk.html . Much of it is in pdf format so you may wish to start netscapthviihe acroread plug-in by
using (for examplejusers/tcc/bin/netscape



function Ahatinv = ica(X)
% Ahatinv = ica(X)

% Independent Component Analysis on data in the columns of X.

% Use maximum likelihood method. Assume logistic source dis tributions.
%

% Return the unmixing matrix Ahatinv

% useful global variables (can’'t be helped)

global ICA X ICA_DIMENSION ICA_NPATTERNS
ICA_X = X;

[ICA_DIMENSION, ICA_NPATTERNS] = size(ICA_X);

% initialise Ahatinv to decorrelating transformation
% (helps to prevent ill-conditioning)
[V,D]=eig(X*X"); AhatinvO = diag(1./sqrt(diag(D)))*V’;

% set options for optimisation algorithm
options(1) = 1; % display info

options(6) = 0; % BFGS quasi-Newton (default)
options(7) 1; % with cubic line search

% minimise the average negative log likelihood
Ahatinv = fminu('evalf’, Ahatinv0, options, ’'gradf’);

% tidy
clear ICA_X ICA_DIMENSION ICA_NPATTERNS

Figure 1. MATLAB code implementingcA using the maximum likelihood method, assuming
logistic distributed sources. In file “ica.m”.

function avnegloglikelihood = evalf(Ahatinv)
global ICA_X ICA_NPATTERNS

S = Ahatinv*ICA_X;
temp = sigmoid(S);

avnegloglikelihood = -(log(abs(det(Ahatinv))) +
(sum(sum(log(temp.*(1.0-temp))))) ./ ICA_NPATTERNS);

Figure 2: MATLAB function to evaluate the average negatoglikelihood. In file “evalf.m”.

function grad = grad_f(Ahatinv)
global ICA_X ICA_NPATTERNS ICA_DIMENSION

S = Ahatinv*ICA_X;
grad = -(eye(ICA_DIMENSION)+(1-2*sigmoid(S))*S’ ./ ICA_ NPATTERNS) * inv(Ahatinv’);

Figure 3: MATLAB function to evaluate the gradient. In filergglf.m”.



Figure 4: Example showing data generated from two indep#ndgistic distributions (shown
left), mixed together using the matrix given in the text (hamiddle), and unmixed using the
ICA maximum likelihood algorithm (shown right).

the source data with a known mixing matéx and then use the above MATLAB code to try to

recover the unmixing matriR ~* only from the set of observations.

The left-most plot of figure 4 shows 1000 points sampled framadimensional distribution
formed from two independent logistic distributions (one peis). The middle plot shows the
result of mixing these sources using the following matrix

0.2262 0.1143
A= < 0.1180 0.0332 ) ' (15)

The right-most plot shows the result from using the MATLABdeogiven above to unmix the

data. The product of the original mixing matri and the estimated un-mixing matrix*
should be the identity up to permutations and axis-aligeddctions of the variables. In fact,
3 ( —0.9712 —0.0460 )

—1a
ATA=1 00253 10041 (16)

4.1 |1cA isdifferent from PcA

Given the above plots one might be tempted to imaginelttyais the same as Principal Com-

ponent AnalysisgcA). This is not the case, and may be understood by realisingitti&e iCA,

PCA is arbitrary if the data is decorrelated. Recall that finds directions of maximum pro-

jected variance, so if the data has equal variance in alttiines {e because it is decorrelated),

then no one direction is any more a maximum projected vagidman any other direction.

AAssuming an identity rotation matrix, multiplying the ptipal component projection matrix
—1

A, by A produces
ALA =

PCA

—0.0075 0.0154 (17)
which is much less diagonally dominated than equation (Aother example which demon-
strates the difference betwern andpca will be given later.

On a point of implementation, initialising A with PCA appears to help preventill-conditioning.

( —0.0155 —0.0071 )
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Figure 5: Example showing data generated from two indep@naefor m distributions (shown
left), mixed together using the matrix given in the text (hamiddle), and unmixed using the
ICA maximum likelihood algorithnibut assuming logistic sources (shown right).

4.2 Robustnessto incorrectly assumed source distributions

Recall that above we assumed the sources to have logistithdifons, and then tested the
algorithm on data generated from logistic distributions @gbvious question is how robust this
algorithm is to sources which do not have logistic distridm$. Figure 5 shows what happens
if the source distributions are uniform but we still assugdstic distributions in the maximum
likelihood model.

This is obviously wrong, as can be additionally verif/igj bpKmg at the product of the

original mixing matrixA and the estimated unmixing matux *,

(18)

—, [ —11705 —1.2325
A A_(—1.2084 1.1738

This is not a numerical problem. The algorithm reaches a (iagal) minimum, and the5°
effect is completely reproduceable. In fact there are sentbkoretical reasons for why this
algorithm has produced the worst conceivable solution endata. However before explaining
these reasons, it is useful to understand what is meant hggisiand super/sub-Gaussianity.

5 Kurtosis, and super/sub-Gaussian distributions

A random variableX is said to besub-Gaussian [4] if it is uniformly distributed, or its probability
density function is expressible in the foreap —g(z) whereg(z) is an even function that is
differentiable (except possibly at the origin), and bgth) and¢'(x)/z are strictly increasing
for 0 < = < oo. If howeverg'(z)/x is strictly decreasing fob < = < oo then the random
variable X is said to besuper-Gaussian. A simple example ig(z) = |z|°, for which X is
sub-Gaussian iff > 2, super-Gaussian if < 2, and of course Gaussianif= 2. Thus loosely
speaking, super-Gaussian distributions have heavy thgseas sub-Gaussian distributions have
light tails.

A convenient measure of the weight in the tails is the redativexcess kurtosis, which for a



| uniform | triangular| Gaussian logistic
ke| 12 | —06 [ 0 | 12

Table 1: The excess in kurtosis for some common distribgtion

| uniform | triangular| Gaussiar| logistic
av log likelihood| —2.060 | —2.038 | —2.024 | —2.000

Table 2: The average log likelihood of various distribui@ssuming a logistic model, estimated
using a sample size of 1000000.

zero mean random variable is defined

E[X1]
X)=_——"*-"1 _3 1
40 = e (49)
The “3” normalises the definition so that the kurtosis of a §&&#an is zero. The kurtosis of some
common distributions are shown in table 1. The kurtosis affes-Gaussian is positive and the

kurtosis of a sub-Gaussian is negative.

5.1 Using kurtosisto explain ICA

Insight intoICA can be gained from observing that a linear combination cd@anvariables is
more Gaussian than the original random variables. This rsidecinterpretation of the central
limit theorem [14]. Thus assuming super-Gaussian didiobs with data from sub-Gaussian
sources results in the output from the “unmixing” matrixrigemore Gaussian and therefdess
separated. In terms of kurtosis, in the example of figure 6, uniformly distributed variables
are linearly combined, thus forming a triangular distribot From table 1 it can be seen that
the kurtosis of a uniform distribution is1.2 and the kurtosis of a triangular distribution+f).6.
The latter is closer to the kurtosis of a logistic distributil.2, and thus one might expect the
likelihood of data from a triangular distribution under ayistic model to be greater than the
likelihood of data from a uniform distribution. Table 2 coniis this.

It is also enlightening to view plots of super-Gaussian amatGaussian distributions, and
then to interpret the maximum likelihood approach as a meéhisearly transforming the data
to maximise the likelihood that it came from one of theserifigtions. Figure 6 shows contour-
plots of sub-Gaussian, Gaussian, and super-Gaussiaibudligns. It is now clear why a model
with (super-Gaussian) logistic sources fails to unmix adinmixture of data from two uniform
distributions (which are sub-Gaussian). The best “fit” ofiatare of uniform distributions onto
a super-Gaussian distribution is4t degrees to the axes.
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sub-Gaussian Gaussian super-Gaussian

Figure 6: Contour plots of sub-Gaussiah,= 2.8 (left), Gaussians = 2 (middle), super-
Gaussiar = 1.2 (right) distributions.

5.2 IcA for sub-Gaussian distributions

Additional verification of the above explanation is obtalig using a model witBub-Gaussian
sources to try to unmix data originating from either supeswn-Gaussian distributions. One
expects the data to be correctly separated in the formerkgseot the latter. Using a model
with sub-Gaussian sourcess;) = a exp —s;, and repeating the experiments of figures 4 and 5,
one indeed obtains the expected solutions.

Figure 7 shows another example where 1000 samples are tghé&@m two independent
sources which have quite different distributions. The fhighal is a modulated sinusoid and
the second is random uniform noise. The figures show thesalsigeing successfully unmixed
using the sub-GaussianA described above. This should be compared with figure 8 wiiotvs
that a model assuming super-Gaussian (logistic) sourtiebdisons completely fails to recover
the original signals. In fact the kurtosis of the two signals0.74 and—1.2, so this result is not
surprising. It is also worth observing thetA does not separate these signals particularly well
either, see figure 9.

In summary, using the likelihood model with assumed logistiurces will not separate sub-
Gaussian data. Similarly, assuming sub-Gaussian sountggimables sub-Gaussian data to be
separated, but does not separate super-Gaussian datau€lp¥ine more accurately the assumed
source distributions are able to fit the actual sources, thee rikely the model will be able to
separate the mixture.

6 Practical ica

Independent Component Analysis can be succinctly destilsea linear non-Gaussian latent
variables model. It is been shown that the assumed distiigiof the latent variablds impor-

tant to the success of the algorithm. In particular, colyerttoosing a sub-Gaussian or super-
Gaussian distribution is vital, and an intuitive explaaatfor this was given in terms of a crude
version of the central limit theorem — a linear combinatidrither sub or super-Gaussian dis-



tributions tends to be more Gaussian. Clearly it would aksoadeful to avoid having to assume
either all super-Gaussian or all sub-Gaussian sourcesp@sstble method is suggested in [11].
Another possibility is to assume a family of distributioriglee form

/Bi’ (20)

p(si) = ;) exp —|s;

and maximising the likelihood not only with respect to themnixing matrix but also with re-
spect to the parametefs. This might automatically select an appropriate sub or s@aissian
distribution for each source.

The model described in this introduction is extremely sen@nd constrained by the as-
sumptions given in section 2.1. Probably the most unréabstsumption is that the samples are
independently sampled. In other words, the data is not ageries. ContexteA [13] is one pos-
sible method of implementingcA “through time”. Adding a “noise” term would also increase
the realism of the model, and possibly enable the extracidawer independent components
than there are number of components in each observation.
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Figure 7: Sub-GaussianA successfully separating two signals.
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Figure 8: Super-GaussianA failing to separate two signals.
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Figure 9:pcA failing to properly separate two signals.
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