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1 Introduction

Independent Component Analysis (ICA) is a solution to the problem of determining the matrix
which will unmix the (unknown) linear combination of (unknown) independent sources. The
only information available is a set of observations of the linearly combined signals. This problem
is also known as Blind Separation of Sources (BSS).

The need for blind separation of sources arises in diverse applications, including

• Speech separation. Here the samples consist of several speech signals that havebeen lin-
early mixed together, and the requirement is to separate them back into individual speakers
[3]. Such a situation occurs for example in a teleconferencing environment, and also the
infamous “cocktail party”.

• Multisensor biomedical records. Here the samples consist of recordings made by a multi-
tude of sensors used to monitor biological signals. For example, the requirement may be to
separate the heartbeat of a fetus from that of the mother using different leads of an Electro-
cardiograph (ECG) [6]. Another example is removing artifacts such as eye movement, pe-
riodic muscle spiking, line noise, and cardiac contamination from Electroencephalograph
(EEG) recordings [10].

• Exploratory data analysis and visualisation. ICA is closely related (but distinct from)
principal component analysis and factor analysis. It is probably very similar to projection
pursuit.

There are several good on-lineICA resources: [2] contains an extremely comprehensive list
of individuals and publications; [8] provides an introduction, some demonstrations, and some
EEG analysis; and [12] provides a list of individuals, the FastICA MATLAB package (now in
/users/tcc/matlab/fastICA ), someEEG analysis, and details of their fixed-point algo-
rithm.

2 Approaches

There are several approaches toICA, including: maximising a suitable likelihood function; max-
imising entropy [3]; and maximising a criterion for statistical independence [7, 1]. The maximum
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entropy approach has been shown several times to be equivalent to the maximum likelihood ap-
proach [5]; both are different from maximising statisticalindependence [9].

We will concentrate on the maximum likelihood approach.

2.1 Maximum Likelihood ICA

Let the vectors representsm independent sources (or latent variables), the square mixing matrix
A represents the linear mixing of the sources, and the vectorx represents them components of
the observed signals. The model is simply

x = As

p(s) =

m∏

i=1

p(si) (1)

and makes the following assumptions: there arem independent sources andm observations; the
mixing matrix is invertible; the components ofs are independent and identically distributed; there
is no “noise” term; there is no time dependence, so each observation is independent of previous
and future observations and the mixing matrix is constant; the signals are instantaneously mixed.
For simplicity we have also made the assumption that the distributionsp(si) have no parameters.
In particular we will assume that they have zero mean and a fixed, usually unit, variance.

Using the propertyp(s) = | detA|p(x), the average log likelihood of a sample ofN inde-
pendent observations is then

L =
1

N

N∑

n=1

log p(xn)

=
1

N

N∑

n=1

log | detA−1| + log p(sn)

= log | detA−1| + 1

N

N∑

n=1

m∑

i=1

log p(sn
i ) (2)

where1 si = A
−1

ij xj .
So to fit the model, the average log likelihoodL is maximised with respect to the param-

etersA−1. Differentiating with respect toA−1 provides the gradient information required for
optimisation,

∂L

∂A
−1

ij

= A
T
ij +

1

N

N∑

n=1

[
∂

∂si
log p(sn

i )

]

i

xn
j . (3)

1The standard index convention implies that there is an implicit summation overj.

2



This may be written more simply without the indexes,

∂L

∂A−1
=

(
I +

1

N

N∑

n=1

φ(sn)(sn)T

)
A

T , (4)

where theith component of the activation functionφ is

φi(s
n) =

∂

∂si
log p(sn

i ). (5)

2.2 Choosing a source distribution

The maximum likelihood approach toICA requires the form of the source distributionsp(si) to
be specified/assumed. The Gaussian and the logistic distributions are considered below.

2.2.1 Gaussian sources

Although the most obvious choice for the source distributions, assuming Gaussian sources fails
because the unmixing matrix is only recoverable upto a rotation. To see this, consider that if

p(si) =
1√
2π

exp

(
−s2

i

2

)
(6)

then equation (5) becomes
φi(si) = −si, (7)

and hence the gradient given by equation (4) becomes

∂L

∂A−1
=

(
I− 1

N

N∑

n=1

(sn)(sn)T

)
A

T . (8)

This gradient is the zero for any matrixA−1 which spheres/whitens/decorrelates2 the data{xn}N
n=1

.
Stacking all the observations by column in the matrixX and using eigenvector/eigenvalue de-
composition,

XX
T = VDV

T , (9)

it is easily verified that

s = A
−1

x whereA−1 = RN1/2
D

−1/2
V

T (10)

makes equation (8) equal to zero for any matrixR with the propertyRR
T = I. An intuitive

way of understanding the presence of an arbitrary rotation is to consider that decorrelation is the
transformation which makes the projected variance in all directions equal to unity; it is clear that
this property is unchanged by further rotations.

To conclude, the unmixing matrix resulting from assuming Gaussian sources is arbitrary up
to a rotation, and therefore clearly unhelpful. We can only hope that the sources really aren’t
(time) independent Gaussians !

2Decorrelate is probably the preferred term; such data may not look anything like a sphere.

3



2.2.2 Logistic sources

Observe that the sigmoid function is a valid cumulative density function because it monotonically
increases from0.0 to 1.0 as the input increases from−∞ to +∞. Thus modelling the sources
with logistic distributions can be written

P (si < a) = sig(a)

p(si) = sig(a)(1 − sig(a)) (11)

where

sig(a) =
1

1 + e−a
. (12)

This distribution has a variance ofπ2

3
, and so must be scaled to make the variance equal to unity.

However it is convenient3 to absorb this scaling into the unmixing matrix.
Whenp(si) is the logistic defined above, it is easy to show that the activation function, equa-

tion (5), has the following simple form:

φi(s) = 1 − 2sig(si), (13)

and hence the gradient, equation (4), becomes

∂L

∂A−1
=

(
I − 1

N

N∑

n=1

(1 − 2sig(sn))(sn)T

)
A

T . (14)

3 MATLAB code

Minimum functionality MATLAB code which implements the maximum likelihood method of
ICA with logistic sources is shown in figure 1. Note that the function fminu , which performs
BFGS quasi-Newton optimisation, is in the optimisation toolbox4. This takes the names of two
functions, one which evaluates the minimand, and one which evaluates its gradient. These func-
tions are given in figures 2 and 3 respectively.

4 Two illustrative examples

A simple test of the above method is to generate source dataS from the assumed source distri-
butions (in this case, independent logistics), make a set ofobservationsX by linearly combining

3Convenient because it is simple. Actually it is probably notwhat we want because the likelihood then changes
with the variance of the sources.

4Type help optim for information on MATLAB’s optimisation toolbox. Alternatively with MATLAB5
use the commandhelpwin . On-line documentation is also available at/data/apps/matlab-5/help/
helpdesk.html . Much of it is in pdf format so you may wish to start netscape with the acroread plug-in by
using (for example)/users/tcc/bin/netscape .
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function Ahatinv = ica(X)
% Ahatinv = ica(X)
% Independent Component Analysis on data in the columns of X.
% Use maximum likelihood method. Assume logistic source dis tributions.
%
% Return the unmixing matrix Ahatinv

% useful global variables (can’t be helped)
global ICA_X ICA_DIMENSION ICA_NPATTERNS
ICA_X = X;
[ICA_DIMENSION, ICA_NPATTERNS] = size(ICA_X);

% initialise Ahatinv to decorrelating transformation
% (helps to prevent ill-conditioning)
[V,D]=eig(X*X’); Ahatinv0 = diag(1./sqrt(diag(D)))*V’;

% set options for optimisation algorithm
options(1) = 1; % display info
options(6) = 0; % BFGS quasi-Newton (default)
options(7) = 1; % with cubic line search

% minimise the average negative log likelihood
Ahatinv = fminu(’evalf’, Ahatinv0, options, ’gradf’);

% tidy
clear ICA_X ICA_DIMENSION ICA_NPATTERNS

Figure 1: MATLAB code implementingICA using the maximum likelihood method, assuming
logistic distributed sources. In file “ica.m”.

function avnegloglikelihood = evalf(Ahatinv)
global ICA_X ICA_NPATTERNS

S = Ahatinv*ICA_X;
temp = sigmoid(S);
avnegloglikelihood = -(log(abs(det(Ahatinv))) +

(sum(sum(log(temp.*(1.0-temp))))) ./ ICA_NPATTERNS);

Figure 2: MATLAB function to evaluate the average negative log likelihood. In file “evalf.m”.

function grad = grad_f(Ahatinv)
global ICA_X ICA_NPATTERNS ICA_DIMENSION

S = Ahatinv*ICA_X;
grad = -(eye(ICA_DIMENSION)+(1-2*sigmoid(S))*S’ ./ ICA_ NPATTERNS) * inv(Ahatinv’);

Figure 3: MATLAB function to evaluate the gradient. In file “gradf.m”.
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Figure 4: Example showing data generated from two independent logistic distributions (shown
left), mixed together using the matrix given in the text (shown middle), and unmixed using the
ICA maximum likelihood algorithm (shown right).

the source data with a known mixing matrixA, and then use the above MATLAB code to try to

recover the unmixing matrix̂A−1 only from the set of observationsX.
The left-most plot of figure 4 shows 1000 points sampled from atwo dimensional distribution

formed from two independent logistic distributions (one per axis). The middle plot shows the
result of mixing these sources using the following matrix

A =

(
0.2262 0.1143
0.1180 0.0332

)
. (15)

The right-most plot shows the result from using the MATLAB code given above to unmix the

data. The product of the original mixing matrixA and the estimated un-mixing matrix̂A−1

should be the identity up to permutations and axis-aligned reflections of the variables. In fact,

Â−1A =

(
−0.9712 −0.0460
−0.0253 1.0041

)
. (16)

4.1 ICA is different from PCA

Given the above plots one might be tempted to imagine thatICA is the same as Principal Com-
ponent Analysis (PCA). This is not the case, and may be understood by realising that unlike ICA,
PCA is arbitrary if the data is decorrelated. Recall thatPCA finds directions of maximum pro-
jected variance, so if the data has equal variance in all directions (ie because it is decorrelated),
then no one direction is any more a maximum projected variance than any other direction.

Assuming an identity rotation matrix, multiplying the principal component projection matrix

Â−1

PCA by A produces

Â−1

PCAA =

(
−0.0155 −0.0071
−0.0075 0.0154

)
, (17)

which is much less diagonally dominated than equation (16).Another example which demon-
strates the difference betweenICA andPCA will be given later.

On a point of implementation, initialisingICA with PCA appears to help prevent ill-conditioning.
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Figure 5: Example showing data generated from two independent uniform distributions (shown
left), mixed together using the matrix given in the text (shown middle), and unmixed using the
ICA maximum likelihood algorithmbut assuming logistic sources (shown right).

4.2 Robustness to incorrectly assumed source distributions

Recall that above we assumed the sources to have logistic distributions, and then tested the
algorithm on data generated from logistic distributions. An obvious question is how robust this
algorithm is to sources which do not have logistic distributions. Figure 5 shows what happens
if the source distributions are uniform but we still assume logistic distributions in the maximum
likelihood model.

This is obviously wrong, as can be additionally verified by looking at the product of the

original mixing matrixA and the estimated unmixing matrix̂A−1,

Â−1A =

(
−1.1705 −1.2325
−1.2084 1.1738

)
. (18)

This is not a numerical problem. The algorithm reaches a true(local) minimum, and the45o

effect is completely reproduceable. In fact there are simple theoretical reasons for why this
algorithm has produced the worst conceivable solution on this data. However before explaining
these reasons, it is useful to understand what is meant by kurtosis and super/sub-Gaussianity.

5 Kurtosis, and super/sub-Gaussian distributions

A random variableX is said to besub-Gaussian [4] if it is uniformly distributed, or its probability
density function is expressible in the formexp−g(x) whereg(x) is an even function that is
differentiable (except possibly at the origin), and bothg(x) andg′(x)/x are strictly increasing
for 0 < x < ∞. If howeverg′(x)/x is strictly decreasing for0 < x < ∞ then the random
variableX is said to besuper-Gaussian. A simple example isg(x) = |x|β, for which X is
sub-Gaussian ifβ > 2, super-Gaussian ifβ < 2, and of course Gaussian ifβ = 2. Thus loosely
speaking, super-Gaussian distributions have heavy tails whereas sub-Gaussian distributions have
light tails.

A convenient measure of the weight in the tails is the relative orexcess kurtosis, which for a
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uniform triangular Gaussian logistic
κ4 −1.2 −0.6 0 1.2

Table 1: The excess in kurtosis for some common distributions.

uniform triangular Gaussian logistic
av log likelihood −2.060 −2.038 −2.024 −2.000

Table 2: The average log likelihood of various distributions assuming a logistic model, estimated
using a sample size of 1000000.

zero mean random variableX is defined

κ4(X) =
E[X4]

(E[X2])2
− 3. (19)

The “3” normalises the definition so that the kurtosis of a Gaussian is zero. The kurtosis of some
common distributions are shown in table 1. The kurtosis of a super-Gaussian is positive and the
kurtosis of a sub-Gaussian is negative.

5.1 Using kurtosis to explain ICA

Insight into ICA can be gained from observing that a linear combination of random variables is
more Gaussian than the original random variables. This is a crude interpretation of the central
limit theorem [14]. Thus assuming super-Gaussian distributions with data from sub-Gaussian
sources results in the output from the “unmixing” matrix being more Gaussian and thereforeless
separated. In terms of kurtosis, in the example of figure 5, two uniformly distributed variables
are linearly combined, thus forming a triangular distribution. From table 1 it can be seen that
the kurtosis of a uniform distribution is−1.2 and the kurtosis of a triangular distribution if−0.6.
The latter is closer to the kurtosis of a logistic distribution 1.2, and thus one might expect the
likelihood of data from a triangular distribution under a logistic model to be greater than the
likelihood of data from a uniform distribution. Table 2 confirms this.

It is also enlightening to view plots of super-Gaussian and sub-Gaussian distributions, and
then to interpret the maximum likelihood approach as a meansof linearly transforming the data
to maximise the likelihood that it came from one of these distributions. Figure 6 shows contour-
plots of sub-Gaussian, Gaussian, and super-Gaussian distributions. It is now clear why a model
with (super-Gaussian) logistic sources fails to unmix a linear mixture of data from two uniform
distributions (which are sub-Gaussian). The best “fit” of a mixture of uniform distributions onto
a super-Gaussian distribution is at45o degrees to the axes.
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sub-Gaussian Gaussian super-Gaussian

Figure 6: Contour plots of sub-Gaussian,β = 2.8 (left), Gaussianβ = 2 (middle), super-
Gaussianβ = 1.2 (right) distributions.

5.2 ICA for sub-Gaussian distributions

Additional verification of the above explanation is obtained by using a model withsub-Gaussian
sources to try to unmix data originating from either super orsub-Gaussian distributions. One
expects the data to be correctly separated in the former casebut not the latter. Using a model
with sub-Gaussian sources,p(si) = α exp−s4

i , and repeating the experiments of figures 4 and 5,
one indeed obtains the expected solutions.

Figure 7 shows another example where 1000 samples are generated from two independent
sources which have quite different distributions. The firstsignal is a modulated sinusoid and
the second is random uniform noise. The figures show these signals being successfully unmixed
using the sub-GaussianICA described above. This should be compared with figure 8 which shows
that a model assuming super-Gaussian (logistic) source distributions completely fails to recover
the original signals. In fact the kurtosis of the two signalsis−0.74 and−1.2, so this result is not
surprising. It is also worth observing thatPCA does not separate these signals particularly well
either, see figure 9.

In summary, using the likelihood model with assumed logistic sources will not separate sub-
Gaussian data. Similarly, assuming sub-Gaussian sources only enables sub-Gaussian data to be
separated, but does not separate super-Gaussian data. Obviously the more accurately the assumed
source distributions are able to fit the actual sources, the more likely the model will be able to
separate the mixture.

6 Practical ICA

Independent Component Analysis can be succinctly described as a linear non-Gaussian latent
variables model. It is been shown that the assumed distributions of the latent variablesis impor-
tant to the success of the algorithm. In particular, correctly choosing a sub-Gaussian or super-
Gaussian distribution is vital, and an intuitive explanation for this was given in terms of a crude
version of the central limit theorem – a linear combination of either sub or super-Gaussian dis-
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tributions tends to be more Gaussian. Clearly it would also be useful to avoid having to assume
either all super-Gaussian or all sub-Gaussian sources. Onepossible method is suggested in [11].
Another possibility is to assume a family of distributions of the form

p(si) = α(βi) exp−|si|βi, (20)

and maximising the likelihood not only with respect to the unmixing matrix but also with re-
spect to the parametersβi. This might automatically select an appropriate sub or super-Gaussian
distribution for each source.

The model described in this introduction is extremely simple, and constrained by the as-
sumptions given in section 2.1. Probably the most unrealistic assumption is that the samples are
independently sampled. In other words, the data is not a timeseries. Context-ICA [13] is one pos-
sible method of implementingICA “through time”. Adding a “noise” term would also increase
the realism of the model, and possibly enable the extractionof fewer independent components
than there are number of components in each observation.
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Figure 7: Sub-GaussianICA successfully separating two signals.
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Figure 8: Super-GaussianICA failing to separate two signals.
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Figure 9:PCA failing to properly separate two signals.
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