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Abstract

This internal report follows on from the introduction to Bmkendent Component
Analysis (cA) given in [1]. An approach is described which enables théchas model
to be extended to include fewer sources than observed ca@nfmmon-identical non-
Gaussian source distributions, and an additative “nosetit The approach is based on
the idea of modelling each source using a fixed 1D mixture efSSians. The parameters
of the model (mixing matrix and noise variances) are themoged using the Expectation
Maximisation €M) algorithm.

1 Introduction

Independent Component Analysig4) is a solution to the problem of determining the
matrix which will unmix the (unknown) linear combination @inknown) independent
sources. The only information available is a set of obsematof the linearly combined
signals.

The basic density estimation approach uses the followindeino

X = As
p(s) = [ (s, (1)
i=1

where the vectos representsn independent sources (or latent variables), the square
mixing matrix A represents the linear mixing of the sources, and the vectepresents
the m components of the observed signals. Note that this modeesnséveral simpli-
fying assumptions, such as equal number of observations@ndes, time independent
samples, and no additive measurement “noise” term.

Assuming Gaussian sources results in a maximum likelihoagien for A which is
only unique up to an arbitrary rotation. Thisaybe a reasonable density model, but is
clearly useless for seperating source components.

Assuming non-Gaussian source distributions (such as thstilg) elliminates the ar-
bitrary rotation problem, but also causes other problenisetmme dominant. In partic-
ular, assuming super(sub)-Gaussiaources in the model enables super(sub)-Gaussian
sourced data to be separated, but trying to fit a super(sab¥<tan sourced model on
data fromsub(superGaussian sources produces an optimally poor solution.

IRecall that a super/sub-Gaussian distribution has hebgiger tails than a Gaussian distribution.
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Insight into the density estimation approachiga can be gained from observing
that a linear combination of random variables is more Gandsian the original random
variables. This is a crude interpretation of the centraltliimorem [3]. Thus assuming
super-Gaussian source distributions optimises the odtpat the “unmixing” matrix
A~ to be also super-Gaussian, which will coincide with thetlesiged up combination
of sourcesso long as the actual sources are also super (and not sub) sEauslt is
therefore vital to assume source distributions of an apjatgform for the density model
solution to solve the blind separation of sources problerhis Ts a tightening of the
widely held belief that it is unnecessary to accurately nhdélde density function. Of
course this tightened version may also turn out to have dixrep however we will
accept it for the moment.

Section 2 begins by describing the problems arrising frosummséng fewer source
components than observation components, and ends byiogtlire solution described in
the rest of this report. Section 3 derives the complete dhgor assuming that the model
coefficients for each source distribution have alreay bdeaimed. Section 4 discusses
methods for finding these fixed source distribution coeffitse Finally section 5 gives
some initial results, and section 6 concludes.

2 Reducing the number of sources

Perhaps the most obvious extensionda is to have a different number of sources from
components in each observation vecice, a non-square mixing matrix. Assuming
more sources than observations introduces unnecessanydastty, and assuming fewer
sources than observations gives rise to a density functioichnis only non-zero in a
linear sub-space of observation space. Such a density msagslthaino patterns fall
outside this “pancake” sub-space. This will always be false to measurement noise,
and so the likelihood of any real data under this model willagls be zero. The obvious
way to solve the problem and give this “pancake” some this&ngto include an additive
noise termv. As before, we shall assume zero mean data; clearly an extstant term
could be included to take non zero-mean data into account.

Xx=As+vVv
p(s) = ][ p(s)),
j=1
d
p(v) = [ p(v), )

i=1

where A now spans a sub-space: (< d), and the components of are independent of
one another and also independens.of his model is very similar to both the standard fac-
tor analysis mod@I[2] and the probabilistic principal component analysis¢4 model

2In the terminology of factor analysis, the sources are ddHetors the columns of the mixing matrix are
calledloadings and the noise term is called the vectospgcificfactors for each observation.
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[5]. Both of these models assume Gaussian sources and Gansise. However factor
analysis assumes the noise term to have an unknown diagoveaiance matrix, whilst
PPCAassumes the noise term to have a covarariance matrix egs@in® unknown mul-
tiple of the identity. Note that the former makes it possitalescale individual variables
and keep essentially the same density model, whilst ther letta more general case of
classical principal component analysis.

The key property of the above model is that the componentsdi ebservation are
conditionally independent given the sources. Thus thecgsuare intended to model the
dependencies between the observations whilepresents the independent noise on each
observation.

As far as solving the blind separation of sources problenoigerned, neither the
factor analysis model nor theprcA model are helpful. This is because both models as-
sume Gaussian sources and hence have maximum likelihoatiossl which are only
unique up to an arbitrary rotation of source space.

Writing down the expression fop(x) is more complicated than for the noiseless
model because each observation could conceivably havegesemated by any value of
source vectos, with an appropriate value of the errer Thusp(x) involves the integral,

p(x) = / p(x/s)p(s)

S

p(x[s) = p(v =x — As). ®3)

The basic problem is that this integral is only analytic fertain simple distributions. For
example, it is clearly soluble if both the measurement emrat the source distributions
are Gaussian since the convolution of two Gaussian disiitglis also Gaussian. But as
described above, this fails to obtain a solution which ursithe sources. Thus we need
to model the sources using non-Gaussian distributiony, third unfortunately tends to
prevent analytic solutions to the above integral.

The solution explored here is conceptually very simple. ragmate each desired
source distribution using a 1D mixture of Gaussians. Thisstot give rise to a closed
form solution to equation (3), but fortunately the ExpdotatMaximisation E€m) algo-
rithm can be used to provide an iterative solution.

It is important to realise that the coefficients of each 1D $&n Mixture Model
(cmm) are fixed in advance by the criteria that they model an asdwmerce distribution
(e.g. a logisitic). Thus the parameters in the density modelfare still limited to the
mixing matrix A and those parameters governing the distribution,ofThis has the
advantage of not introducing extra parameters into the inadd thus avoids increasing
the problems of overfitting. In any case, as explained in tle¥ipus section, it may
be unnecessary to model the sources particularly accyratelrder to achieve source
separation.



3 Theconstrained mixture of Gaussians model

This section derives the iterative algorithm for finding frerameters of a model made
from sources which are each a fixed mixture of GaussiansidBettshows how to find
suitable values for the mixture coefficients such thatdives for each source approxi-
mates different assumed distributions.

3.1 Themodd

Let the ;" source component be written

K;

p(s5) =Y p(s;lk;) P(k;),

ijl
p(sjlkj) = d(s5; pey» X ) (4)

whereg(z; mean covariancg describes the probability density functicroF) of a (multi-
variate) Gaussian. An alternative, equivalent, and a@dggtus notation is

K
= ZP(S|k)P(k)> ®)
k=1
p(slk) = o(s; px, Xx), (6)
=TI P, (7)
j=1
where
K K Km
Z =
k k1 km

andXy is a diagonal covariance, so

B(s5 b, X)) = | | (855 by » 2k )- (8)

—

Il
—

J

For completeness, we will write the noise distribution ia #ame way,

p(V) = ¢(V§ 0, \11)7 (9)
whereV is also a diagonal covariance matrix.
The following relationship will be much used throughout following analysis:
p(s, k,x) = p(x[s, k)p(s|k) P(k) (10)
= ¢(x; As, U)o (s; e, L) P (k). (11)



3.2 Theunconditional density

With the new notation, the unconditional density can betemit

plx) = §p<x|k>P<k> (12)
wherep(x|k) is found by integrating OL;,
i) = [ plxis. k)p(siio)
= [ ol s, )os e B

= o(x; Ap, U + A AT). (13)

Recalling thatP(k), ux and Xy are fixed for allk, and that the parameters of the
model areA andV, it can be seen that the density model is simply a highly caimsd
mixture of Gaussians.

3.3 Preparing for EM

The eM algorithm is a powerful technique for maximising likelireban the presence of
unknowns. For this problem, the vectors

X = {Xn}fzvzl
are observed and hence known, and the vectors
S= {Sn nN:I K= {kn}ajmvzl

are unobserved and hence unknown.
Thus theeM update step is (see [4] for an excellent explanation),

Ot — arg max/ > p(S,K[X;0")log p(X[S, K; O). (14)
(€] S K

Note that the parameters of the model= { A, ¥}, arenotrandom variables, hence
the ’;’ notation. Note also that the summations have becorea &arger, for example:

We will (still ) not use the fact the the data is a time sergss,

N

p(S,KX;0") = [ [ p(s". K" [x"; ©), (15)
n=1
N

log p(X|S,K;0) = > log p(x"[s",k"; ©) (16)
n=1
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3.4 Simplifying the E-step

This subsection shows how to simplify the summations ingtieupdate step (equation
14). This essentially involves the following “trick”,

S FED) =)0 bwn f(K), (17)
n k

n

followed by marginalisations using summations and intiégna. Thus

b8, KIX:01) log p(XIS. K ©)
Sk

= [ Tat 0 3 logplxls" K5 0)
S KN

n' n

=/ YD e K xM00) Y T S log p(x[s”, k; ©)
Syt KN n k

:/SZZ Z'--Z5k7knHp(sn/,kn,|xnl;®t) log p(x"|s", k; ©)
n k 1 kN n’

L, p(s 1 s ) t
/sl /NZ§ plerxren P KO0 logp(ls, ks ©)
=33 [plenkix 01 logp(xls ki ©
n k vS
:Z/Zp(s,k|x”;®t) log p(x"|s; ©)
n Y% k

:Z/p(s|x”;@t) log p(x"|s; ©). (18)

This may be interpreted as the log likelihood of the obsemesdorsx™ given the un-
observed vectos, averagedwith respect to our estimate of the unobserved distribstion
p(s|x™; ©) at this iteration step. Note that the unobserved variables, which denote
the source kernel for each observation, have been summed out

3Don‘t panic.



3.5 FindingtheE-step in termsof <s>,; and <ss’>,;

Continuing on from the “expectation” equation, (18), we sanplify further:
=3 [ plolx©) log (" 45, W)
n t 1 -1 1 n Ta,—1/n
:Z p(s|x"; ©") Constant—|—§10g|\11 |—§(x — As)" U (x" — As)
n S

:Z constant- %log |t — %/p(s\x”; O (x" — As)T U1 (x" — 4s).  (19)

S

Defining
<P [ Folslx";@) (20)
allows equation (19) to be written

1
= constantt 5 log o4
n

1
-5 [(x")T U 1x" —2(x™) T U4 <s>, +tr(ATT 1A <ss”>, )] (21)
If we simplify further by assuming the variances on the measent noise components

are all equd, ¥ = 021, then equation (21) becomes

d. o
= constant- 5 logo®+
n

1

1
~ 5,2 x")TA <8>p ¢ ——tr(ATA <ssT>n,t). (22)

1
n\T ,n
(X ) X"+ 20-2

ol
3.6 Finding the m-step in termsof <s>,,; and <ssT>n7t

This simply involves finding the values of the parameterscivimaximise equation (22).
Setting the derivatives with respecttoando? equal to zero gives

-1
(A=) A= (Z x" <s>£,t> (Z <ssT>n,t> (23)
1
~ Nd

This is a very satisfying result, since by dropping the betskcand>, and the reference
to ¢, we obtain exactly the closed form solution for the case wiensource vectors
{s"}N_, are in fact known.

((02)H1 =) 0% = < ()X = 2(3)T A <y +ir(ATA <587, )] . (29)

4A later version of this document will not make this assummptio
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3.7 Calculating p(s|x", k; ©F)

Itis likely from the definition of< f>,, ; (equation 20) that an expression fds|x", k; ©°)
will be required. This is indeed the case. Noting that

p(s|x", k; ©1)p(x"|k; ©') = p(x"|s, k; ©")p(s|k; ©)
= ¢(x"; A's, U)o (s; pc, Ti)

is proportional to
exp —% [(x" — As)T (W) 7! (x" = As) + (s — ) (Ba) (s — )] . (25)

and by refactorising to give a “Gaussiansij one can deduce that

p(s|x", k; ©") = ¢(s; Mymy, ., My) (26)

where
(M{)™h = (AHT () ~HAY) + 5! (27)
mb o= Sy e+ (AD)T (8 X" (28)

3.8 Calculating <f>,;

Straightforward manipulation provides a convenient foom< >, ;. Starting from the
definition, equation (20),

<o = / £ plslx"; 0 (29)
X t n . t
[ e ot 0
n t
_ Zp |1;n@@t / F pls|x" k: 1), (31)

Finally, given the form fop(s|x", k; ©¢) shown in equation (26), we obtain the last
of the required equations:

p(x"|k; @t JP(k) 0
<s>nt—z 60 Myml, (32)
and
p x|k @t
SEUEDY D (M (Mt )Mt ] (39)



3.9 Thealgorithm

We are now in a position to summarise the algorithm. Thresaedriables have been
defined for algorithmic convenience:

R, = Zx”(x”)T, Ry, = Z <s>n: (xT, R.= Z <ssT>,;. (34)

setR, = zn(xn)(x”)T
loop over iterationst

setR, =0
setR. =0

loop over patterns,

setp(x™; ©) = 0
set<s>, =0
set<ss?>, ;=0

loop over all kernelsk

computep(x"|k; ©f) using equation (13)
computelM using equation (27)
computemfl,k using equation (28)

accumulater(x™; ©%) with p(x"|k; ©) P(k)
accumulate<s>,, ; as per equation (32), but without normalisation
accumulate<ssT>n,t as per equation (33), but without normalisation

normalise<s>, ; with p(x"; ©)
normalise<ss’ >,, ;. with p(x"; ©Y)

accumulateR, with <s>,, ; (x)7
accumulateR, with <ss”>,, ;

update parameter$’™! = RTR!
update parametefs?)'*! = L tr (R, — 24" 1Ry, + AR (ATH1)T)




3.10 TheMATLAB code

The above code design maps directly into MATLAB. Note thas implementation is
limited to exactly two sources.

function [A,var] = ica_with_noise(X, sources)

% Each pattern is in a column of X

% ’sources’ is a 1xE array of the structure 'source’:

%  source.K is a number of kernels

%  source.p is a vector of priors

%  source.mu is a vector of centres

%  source.sigma is a vector of variances

% 'A’ is the mixing matrix

% ’'var’ is measurement variance ie v = Gauss(v; 0,var*l)

% maximum number of iterations
ITS = 100;

% set #observed dimensions, #patterns, and #sources
[d,N] = size(X);
m = size(sources,?2);

% randomly initialise A and var (?)
A = randn(d,m)
var = 0.1

% can find Ra now because it is fixed
Ra = X*X’;

% loop over iterations
for its=1:ITS,

% initialise Rb and Rc
Rb = zeros(m,d);
Rc = zeros(m,m);

% loop over patterns
for n=1:N,

% pattern x'n
X = X(;,n);

% initialise <s>_{n,t}
s = zeros(m,l1);

% initialise <s*s’> {n,t}
ss = zeros(m,m);
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% initialise p(x"n) for accumulation
px = 0;

% loop over all kernels
for kl=1:sources(1).K,
for k2=1:sources(2).K,

% form Kk, p, mu, sigma, sigmainv, phi

k = [k1;k2];

p = sources(l).p(kl) * sources(2).p(k2);

mu = [sources(1).mu(kl) ; sources(2).mu(k2)];

sigma = diag([sources(1).sigma(kl) ; sources(2).sigma(k 2)D;
sigmainv = diag(1l./[sources(1).sigma(kl) ; sources(2).s igma(k2)]);

phi = var*eye(d);

% compute p(x'n , k)

pxk = gauss((A*mu)’, phi+A*sigma*A’, X’) * p;

% and also accumulate ready for normalisation latter
px = px + pxk;

% compute M and m, and M*m

M = inv(A" * A [/ var + sigmainv);
m = sigmainv*mu + A’ * x / var;
Mm = M*m;

% accumulate <s>_{n,t} and <s*s'>_{n,t}
s = s + pxk * Mm;
ss = ss + pxk * (M + Mm*Mm’);

end
end

% normalise <s>_{n,t} and <s*s'>_{n,t}
s = s/ px
ss = ss |/ px;

% accumulate Rb and Rc

Rb = Rb + s * X;
Rc = Rc + ss;
end

% update model paramters, A and var

A = Rb’ * inv(Rc);

var = trace(Ra-2*A*Rb+A*Rc*A’) / (N*d);
end
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4 Modelling each sourcewith a Gaussian mixture

The algorithm described so far has assumed that the coatogverning each source
distribution are already known. This section will discussgible choices.

For the purposes of investigating the method as a solutidhetdlind separation of
sources problem, we will initially have only two types of soer a super-Gaussian source
approximating a logistic distribution, and a sub-Gaussiaurce approximating a uniform
distribution. The problem is thus of finding suitable valémsthe coefficients<;, P(k;),
px; and ¥y, for sourcej such that the model given by equation (4) approximates reithe
a logistic or a uniform. These equations are repeated bealdwvithout the clutteringj’
sub-script.

K
p(s) = 3 plslk) P(k),
k=1

p(s|k) = o(s; pr, X)), (35)

This is therefore a 1-dimensional density estimation gwbls is a scalar) for which
we actually know the desired target distribution. This castis with the data estimation
scenario for which only aamplefrom the target distribution is known.

The obvious approach is to maximise the normalised loditiked on an infinite
sample,

L= / £(s)log p(s), (36)

wheref (s) is the target distributioh Rather than attempting to find an analytic solution,
we will approximate the integral with a large sampleMdfpoints fromf(-) to obtain the
normalised log-likelihood,

N
1 n
L~ N nz::llogp(s ) (37)

This mixture model is then easily optimised with respecti® model coefficients using
EM. Figure 1 shows that a logistic distribution is accuratelydelled using only three
Gaussians, whilst figure 2 shows that rather more Gaussiang@uired to approximate
a uniform. However this does necessarily mean that we shamddmore Gaussians to
approximate uniform distributions than to approximatedtg. Recall that the (excess)
kurtosis measures the weight of the tails, where the kwtoka logistic is1.2 and the
kurtosis of a uniform is-1.2. Compare with the kurtosis obtained from the approxima-
tions using Gaussian mixtufeshown in table 1. Ok, so this requires more interpration.

5This expression is also minus the (unnormalised) Kullbiaeibler divergence
6These numbers are only approximate because they were tesfifnam samples. A later version of this
document will (I hope !) give the analytic solution.
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#kernels| logistic | uniform
3 0.5 -1.1
5 2 -1.2
7 4 -1.1

Table 1: Excess kurtosis for approximations of both logiatid uniform distributions using
mixture of Gaussians with various number of kernels.

5 Reaults

The algorithm works on data sets generated from correcyraed distributions. Un-
fortunately, due to its currently un-vectored form, the MAAB implementation is very
slow. | have not yet tested it on more interesting examples.

6 Conclusions

Inconclusive so far. However | think it is worth pursuing,tmeecessarily because the
current model (if made faster) is particularly good, butdaese it is a promising approach
to solving the blind deconvolution problem. A solution tastiproblem, which would
finally take advantage of the time-series nature of the datad lead to useful filter.
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p(k)

15

p(k) s hI 0.0580| -1.3165| 1.7092

p(k) Lk hIy 0.0669| -1.3801| 2.0138 0.1591| -0.8372| 0.3562
0.2633| -0.2477| 1.4873 0.2786/| -0.3750| 0.5309 0.1856| -0.1188| 0.3108
0.4734 0 0.4523 0.3089 0 0.5246 0.1946 0 0.5808
0.2633| -0.2477| 1.4873 0.2786| 0.3750 | 0.5309 0.1856| 0.1188 | 0.3108
0.0669| 1.3801 | 2.0138 0.1591| 0.8327 | 0.3562

0.0580| 1.3165| 1.7092

Figure 1: Using a mixture of Gaussians (shown solid) to axiprate a logistic distribution
(shown dashed).

p(k)

Mk

(%) I S 0.0739] -1.5819] 0.0112

(k) m S 0.1190] -1.4880] 0.0194| | 0.1634| -1.1508| 0.0632
0.1844 -1.3552| 0.0616| | 0.2422| -0.8879| 0.0964| | 0.1816| -0.4382| 0.1592
0.6312] 0 |04791| |02776] O |0.1708| |0.1623] 0 |0.2772
0.1844| -1.3552| 0.0616| | 0.2422| 0.8879 | 0.0964| | 0.1816| 0.4382| 0.1592
0.1190| 1.4880 | 0.0194| |0.1634| 1.1508 | 0.0632

0.0739| 1.5819 | 0.0112

Figure 2: Using mixtures of Gaussians (shown solid) to agprate a uniform distribution
(shown dashed).
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