
Extending the basicICA model
Part 1: reducing the number of souces

Version 0.1

Timothy Corbett-Clark, 12.3.1999
SP&NN Research Group, Oxford

Abstract

This internal report follows on from the introduction to Independent Component
Analysis (ICA) given in [1]. An approach is described which enables the basic ICA model
to be extended to include fewer sources than observed components, non-identical non-
Gaussian source distributions, and an additative “noise” term. The approach is based on
the idea of modelling each source using a fixed 1D mixture of Gaussians. The parameters
of the model (mixing matrix and noise variances) are then optimsed using the Expectation
Maximisation (EM) algorithm.

1 Introduction

Independent Component Analysis (ICA) is a solution to the problem of determining the
matrix which will unmix the (unknown) linear combination of(unknown) independent
sources. The only information available is a set of observations of the linearly combined
signals.

The basic density estimation approach uses the following model:

x = As

p(s) =
m
∏

i=1

p(si), (1)

where the vectors representsm independent sources (or latent variables), the square
mixing matrixA represents the linear mixing of the sources, and the vectorx represents
the m components of the observed signals. Note that this model makes several simpli-
fying assumptions, such as equal number of observations andsources, time independent
samples, and no additive measurement “noise” term.

Assuming Gaussian sources results in a maximum likelihood solution forA which is
only unique up to an arbitrary rotation. Thismaybe a reasonable density model, but is
clearly useless for seperating source components.

Assuming non-Gaussian source distributions (such as the logistic) elliminates the ar-
bitrary rotation problem, but also causes other problems tobecome dominant. In partic-
ular, assuming super(sub)-Gaussian1 sources in the model enables super(sub)-Gaussian
sourced data to be separated, but trying to fit a super(sub)-Gaussian sourced model on
data fromsub(super)-Gaussian sources produces an optimally poor solution.

1Recall that a super/sub-Gaussian distribution has heavier/lighter tails than a Gaussian distribution.

1

Insight into the density estimation approach toICA can be gained from observing
that a linear combination of random variables is more Gaussian than the original random
variables. This is a crude interpretation of the central limit theorem [3]. Thus assuming
super-Gaussian source distributions optimises the outputfrom the “unmixing” matrix
A

−1 to be also super-Gaussian, which will coincide with the least mixed up combination
of sourcesso long as the actual sources are also super (and not sub) Gaussian. It is
therefore vital to assume source distributions of an appropriate form for the density model
solution to solve the blind separation of sources problem. This is a tightening of the
widely held belief that it is unnecessary to accurately model the density function. Of
course this tightened version may also turn out to have exceptions; however we will
accept it for the moment.

Section 2 begins by describing the problems arrising from assuming fewer source
components than observation components, and ends by outlining the solution described in
the rest of this report. Section 3 derives the complete algorithm, assuming that the model
coefficients for each source distribution have alreay been obtained. Section 4 discusses
methods for finding these fixed source distribution coefficients. Finally section 5 gives
some initial results, and section 6 concludes.

2 Reducing the number of sources

Perhaps the most obvious extension toICA is to have a different number of sources from
components in each observation vector,i.e. a non-square mixing matrix. Assuming
more sources than observations introduces unnecessary redundancy, and assuming fewer
sources than observations gives rise to a density function which is only non-zero in a
linear sub-space of observation space. Such a density modelsays thatno patterns fall
outside this “pancake” sub-space. This will always be falsedue to measurement noise,
and so the likelihood of any real data under this model will always be zero. The obvious
way to solve the problem and give this “pancake” some thickness is to include an additive
noise termv. As before, we shall assume zero mean data; clearly an extra constant term
could be included to take non zero-mean data into account.

x = As + v

p(s) =
m
∏

j=1

p(sj),

p(v) =

d
∏

i=1

p(vi), (2)

whereA now spans a sub-space (m < d), and the components ofv are independent of
one another and also independent ofs. This model is very similar to both the standard fac-
tor analysis model2 [2] and the probabilistic principal component analysis (PPCA) model

2In the terminology of factor analysis, the sources are called factors, the columns of the mixing matrix are
calledloadings, and the noise term is called the vector ofspecificfactors for each observation.

2

[5]. Both of these models assume Gaussian sources and Gaussian noise. However factor
analysis assumes the noise term to have an unknown diagonal covariance matrix, whilst
PPCAassumes the noise term to have a covarariance matrix equal tosome unknown mul-
tiple of the identity. Note that the former makes it possibleto scale individual variables
and keep essentially the same density model, whilst the latter is a more general case of
classical principal component analysis.

The key property of the above model is that the components of each observation are
conditionally independent given the sources. Thus the sources are intended to model the
dependencies between the observations whilev represents the independent noise on each
observation.

As far as solving the blind separation of sources problem is concerned, neither the
factor analysis model nor thePPCA model are helpful. This is because both models as-
sume Gaussian sources and hence have maximum likelihood solutions which are only
unique up to an arbitrary rotation of source space.

Writing down the expression forp(x) is more complicated than for the noiseless
model because each observation could conceivably have beengenerated by any value of
source vectors, with an appropriate value of the errorv. Thusp(x) involves the integral,

p(x) =

∫

s

p(x|s)p(s)

p(x|s) = p(v = x−As). (3)

The basic problem is that this integral is only analytic for certain simple distributions. For
example, it is clearly soluble if both the measurement errorand the source distributions
are Gaussian since the convolution of two Gaussian distributions is also Gaussian. But as
described above, this fails to obtain a solution which unmixes the sources. Thus we need
to model the sources using non-Gaussian distributions, only this unfortunately tends to
prevent analytic solutions to the above integral.

The solution explored here is conceptually very simple. Approximate each desired
source distribution using a 1D mixture of Gaussians. This doesnot give rise to a closed
form solution to equation (3), but fortunately the Expectation Maximisation (EM) algo-
rithm can be used to provide an iterative solution.

It is important to realise that the coefficients of each 1D Gaussian Mixture Model
(GMM) are fixed in advance by the criteria that they model an assumed source distribution
(e.g. a logisitic). Thus the parameters in the density model forx are still limited to the
mixing matrix A and those parameters governing the distribution ofv. This has the
advantage of not introducing extra parameters into the model, and thus avoids increasing
the problems of overfitting. In any case, as explained in the previous section, it may
be unnecessary to model the sources particularly accurately in order to achieve source
separation.

3

3 The constrained mixture of Gaussians model

This section derives the iterative algorithm for finding theparameters of a model made
from sources which are each a fixed mixture of Gaussians. Section 4 shows how to find
suitable values for the mixture coefficients such that theGMM for each source approxi-
mates different assumed distributions.

3.1 The model

Let thejth source component be written

p(sj) =

Kj
∑

kj=1

p(sj|kj)P (kj),

p(sj|kj) = φ(sj ;µkj
,Σkj

), (4)

whereφ(x; mean, covariance) describes the probability density function (PDF) of a (multi-
variate) Gaussian. An alternative, equivalent, and advantageous notation is

p(s) =

K
∑

k=1

p(s|k)P (k), (5)

p(s|k) = φ(s;µk,Σk), (6)

P (k) =

m
∏

j=1

P (kj), (7)

where

K
∑

k

≡

K1
∑

k1

. . .

Km
∑

km

andΣk is a diagonal covariance, so

φ(s;µk,Σk) =

m
∏

j=1

φ(sj;µkj
,Σkj

). (8)

For completeness, we will write the noise distribution in the same way,

p(v) = φ(v; 0,Ψ), (9)

whereΨ is also a diagonal covariance matrix.
The following relationship will be much used throughout thefollowing analysis:

p(s,k,x) = p(x|s,k)p(s|k)P (k) (10)

= φ(x;As,Ψ)φ(s;µk,Σk)P (k). (11)

4

3.2 The unconditional density

With the new notation, the unconditional density can be written

p(x) =

K
∑

k=1

p(x|k)P (k) (12)

wherep(x|k) is found by integrating outs,

p(x|k) =

∫

s

p(x|s,k)p(s|k)

=

∫

s

φ(x;As,Ψ)φ(s;µk,Σk)

= φ(x;Aµk,Ψ + AΣkAT). (13)

Recalling thatP (k), µk andΣk are fixed for allk, and that the parameters of the
model areA andΨ, it can be seen that the density model is simply a highly constrained
mixture of Gaussians.

3.3 Preparing for EM

The EM algorithm is a powerful technique for maximising likelihood in the presence of
unknowns. For this problem, the vectors

X = {xn}Nn=1

are observed and hence known, and the vectors

S = {sn}Nn=1 K = {kn}Nn=1

are unobserved and hence unknown.
Thus theEM update step is (see [4] for an excellent explanation),

Θt+1 ←− arg max
Θ

∫

S

∑

K

p(S,K|X; Θt) log p(X|S,K; Θ). (14)

Note that the parameters of the model,Θ = {A,Ψ}, arenot random variables, hence
the ’;’ notation. Note also that the summations have become even larger, for example:

∑

K

≡
∑

k1

. . .
∑

kN

.

We will (still !) not use the fact the the data is a time series,so

p(S,K|X; Θt) =

N
∏

n=1

p(sn,kn|xn; Θt), (15)

log p(X|S,K; Θ) =
N
∑

n=1

log p(xn|sn,kn; Θ) (16)

5

3.4 Simplifying the E-step

This subsection shows how to simplify the summations in theEM update step (equation
14). This essentially involves the following “trick”,

∑

n

f(kn) =
∑

n

∑

k

δk,knf(k), (17)

followed by marginalisations using summations and integrations. Thus3

∫

S

∑

K

p(S,K|X; Θt) log p(X|S,K; Θ)

=

∫

S

∑

k1

. . .
∑

kN

∏

n′

p(sn′

,kn′

|xn′

; Θt)
∑

n

log p(xn|sn,kn; Θ)

=

∫

S

∑

k1

. . .
∑

kN

∏

n′

p(sn′

,kn′

|xn′

; Θt)
∑

n

∑

k

δk,kn log p(xn|sn,k; Θ)

=

∫

S

∑

n

∑

k

∑

k1

. . .
∑

kN

δk,kn

∏

n′

p(sn′

,kn′

|xn′

; Θt) log p(xn|sn,k; Θ)

=

∫

s1

. . .

∫

sN

∑

n

∑

k

∏

n′ p(sn′

,kn′

|xn′

; Θt)

p(sn|xn; Θt)
p(sn,k|xn; Θt) log p(xn|sn,k; Θ)

=
∑

n

∑

k

∫

s

p(s,k|xn; Θt) log p(xn|s,k; Θ)

=
∑

n

∫

s

∑

k

p(s,k|xn; Θt) log p(xn|s; Θ)

=
∑

n

∫

s

p(s|xn; Θt) log p(xn|s; Θ). (18)

This may be interpreted as the log likelihood of the observedvectorsxn given the un-
observed vectors, averagedwith respect to our estimate of the unobserved distributions
p(s|xn; Θt) at this iteration stept. Note that the unobserved variablesk

n, which denote
the source kernel for each observation, have been summed out.

3
Don’t panic.

6

3.5 Finding the E-step in terms of <s>n,t and <ss
T>n,t

Continuing on from the “expectation” equation, (18), we cansimplify further:

=
∑

n

∫

s

p(s|xn; Θt) log φ(xn;As,Ψ)

=
∑

n

∫

s

p(s|xn; Θt)

[

constant+
1

2
log |Ψ−1| −

1

2
(xn −As)T Ψ−1(xn −As)

]

=
∑

n

constant+
1

2
log |Ψ−1| −

1

2

∫

s

p(s|xn; Θt)(xn −As)T Ψ−1(xn −As). (19)

Defining

<f>n,t =

∫

s

f p(s|xn; Θt) (20)

allows equation (19) to be written

=
∑

n

constant+
1

2
log |Ψ−1|+

−
1

2

[

(xn)T Ψ−1
x

n − 2(xn)T Ψ−1A <s>n,t +tr(AT Ψ−1A <ss
T>n,t)

]

. (21)

If we simplify further by assuming the variances on the measurement noise components
are all equal4, Ψ = σ2I, then equation (21) becomes

=
∑

n

constant−
d

2
log σ2+

−
1

2σ2
(xn)T x

n +
1

σ2
(xn)T A <s>n,t −

1

2σ2
tr(AT A <ss

T>n,t). (22)

3.6 Finding the M-step in terms of <s>n,t and <ss
T>n,t

This simply involves finding the values of the parameters which maximise equation (22).
Setting the derivatives with respect toA andσ2 equal to zero gives

(

At+1 =
)

A =

(

∑

n

x
n <s>T

n,t

)(

∑

n

<ss
T>n,t

)

−1

(23)

(

(σ2)t+1 =
)

σ2 =
1

Nd

[

(xn)T x
n − 2(x)T A <s>n,t +tr(AT A <ss

T>n,t)
]

. (24)

This is a very satisfying result, since by dropping the bra-kets,<and>, and the reference
to t, we obtain exactly the closed form solution for the case whenthe source vectors
{sn}Nn=1 are in fact known.

4A later version of this document will not make this assumption.

7

3.7 Calculating p(s|xn,k; Θt)

It is likely from the definition of<f>n,t (equation 20) that an expression forp(s|xn,k; Θt)
will be required. This is indeed the case. Noting that

p(s|xn,k; ΘT)p(xn|k; Θt) = p(xn|s,k; Θt)p(s|k; Θt)

= φ(xn;At
s,Ψt)φ(s;µk,Σk)

is proportional to

exp−
1

2

[

(xn −As)T (Ψt)−1(xn −As) + (s− µk)(Σk)−1(s− µk)
]

, (25)

and by refactorising to give a “Gaussian ins”, one can deduce that

p(s|xn,k; Θt) = φ(s;M t
kmt

n,k,M t
k) (26)

where

(M t
k
)−1 = (At)T (Ψt)−1(At) + Σ−1

k
(27)

mt
n,k = Σ−1

k
µk + (At)T (Ψt)−1

x
n. (28)

3.8 Calculating <f>n,t

Straightforward manipulation provides a convenient form for <f>n,t. Starting from the
definition, equation (20),

<f>n,t =

∫

s

f p(s|xn; Θt) (29)

=

∫

s

f
∑

k

p(s|xn,k; Θt)p(xn|k; Θt)P (k)

p(xn; Θt)
(30)

=
∑

k

p(xn|k; Θt)P (k)

p(xn; Θt)

∫

s

f p(s|xn,k; Θt). (31)

Finally, given the form forp(s|xn,k; Θt) shown in equation (26), we obtain the last
of the required equations:

<s>n,t =
∑

k

p(xn|k; Θt)P (k)

p(xn; Θt)
M t

k
mt

n,k (32)

and

<ss
T>n,t =

∑

k

p(xn|k; Θt)P (k)

p(xn; Θt)

[

M t
k

+ (M t
k
mt

n,k)(M t
k
mt

n,k)T
]

. (33)

8

3.9 The algorithm

We are now in a position to summarise the algorithm. Three extra variables have been
defined for algorithmic convenience:

Ra =
∑

n

x
n(xn)T , Rb =

∑

n

<s>n,t (xn)T , Rc =
∑

n

<ss
T>n,t . (34)

setRa =
∑

n(xn)(xn)T

loop over iterations,t

setRb = 0
setRc = 0

loop over patterns,n

setp(xn; Θt) = 0
set<s>n,t= 0
set<ss

T>n,t= 0

loop over all kernels,k

computep(xn|k; Θt) using equation (13)
computeM t

k
using equation (27)

computemt
n,k using equation (28)

accumulatep(xn; Θt) with p(xn|k; Θt)P (k)
accumulate<s>n,t as per equation (32), but without normalisation
accumulate<ss

T>n,t as per equation (33), but without normalisation

normalise<s>n,t with p(xn; Θt)
normalise<ss

T>n,k with p(xn; Θt)

accumulateRb with <s>n,t (xn)T

accumulateRc with <ss
T>n,t

update parametersAt+1 = RT
b R−1

c

update parameters(σ2)t+1 = 1

Nd
tr
(

Ra − 2At+1Rb + At+1Rc(A
t+1)T

)

9

3.10 The MATLAB code

The above code design maps directly into MATLAB. Note that this implementation is
limited to exactly two sources.

function [A,var] = ica_with_noise(X, sources)

% Each pattern is in a column of ’X’
% ’sources’ is a 1xE array of the structure ’source’:
% source.K is a number of kernels
% source.p is a vector of priors
% source.mu is a vector of centres
% source.sigma is a vector of variances
% ’A’ is the mixing matrix
% ’var’ is measurement variance ie v = Gauss(v; 0,var*I)

% maximum number of iterations
ITS = 100;

% set #observed dimensions, #patterns, and #sources
[d,N] = size(X);
m = size(sources,2);

% randomly initialise A and var (?)
A = randn(d,m)
var = 0.1

% can find Ra now because it is fixed
Ra = X*X’;

% loop over iterations
for its=1:ITS,

% initialise Rb and Rc
Rb = zeros(m,d);
Rc = zeros(m,m);

% loop over patterns
for n=1:N,

% pattern xˆn
x = X(:,n);

% initialise <s>_{n,t}
s = zeros(m,1);

% initialise <s*s’>_{n,t}
ss = zeros(m,m);

10

% initialise p(xˆn) for accumulation
px = 0;

% loop over all kernels
for k1=1:sources(1).K,

for k2=1:sources(2).K,

% form k, p, mu, sigma, sigmainv, phi
k = [k1;k2];
p = sources(1).p(k1) * sources(2).p(k2);
mu = [sources(1).mu(k1) ; sources(2).mu(k2)];
sigma = diag([sources(1).sigma(k1) ; sources(2).sigma(k 2)]);
sigmainv = diag(1./[sources(1).sigma(k1) ; sources(2).s igma(k2)]);
phi = var*eye(d);

% compute p(xˆn , k)
pxk = gauss((A*mu)’, phi+A*sigma*A’, x’) * p;
% and also accumulate ready for normalisation latter
px = px + pxk;

% compute M and m, and M*m
M = inv(A’ * A / var + sigmainv);
m = sigmainv*mu + A’ * x / var;
Mm = M*m;

% accumulate <s>_{n,t} and <s*s’>_{n,t}
s = s + pxk * Mm;
ss = ss + pxk * (M + Mm*Mm’);

end
end

% normalise <s>_{n,t} and <s*s’>_{n,t}
s = s / px;
ss = ss / px;

% accumulate Rb and Rc
Rb = Rb + s * x’;
Rc = Rc + ss;

end

% update model paramters, A and var
A = Rb’ * inv(Rc);
var = trace(Ra-2*A*Rb+A*Rc*A’) / (N*d);

end

11

4 Modelling each source with a Gaussian mixture

The algorithm described so far has assumed that the coefficients governing each source
distribution are already known. This section will discuss possible choices.

For the purposes of investigating the method as a solution tothe blind separation of
sources problem, we will initially have only two types of source: a super-Gaussian source
approximating a logistic distribution, and a sub-Gaussiansource approximating a uniform
distribution. The problem is thus of finding suitable valuesfor the coefficientsKj, P (kj),
µkj

andΣkj
for sourcej such that the model given by equation (4) approximates either

a logistic or a uniform. These equations are repeated below but without the cluttering ’j’
sub-script.

p(s) =

K
∑

k=1

p(s|k)P (k),

p(s|k) = φ(s;µk,Σk), (35)

This is therefore a 1-dimensional density estimation problem (s is a scalar) for which
we actually know the desired target distribution. This contrasts with the data estimation
scenario for which only asamplefrom the target distribution is known.

The obvious approach is to maximise the normalised log-likelihood on an infinite
sample,

L =

∫

s

f(s) log p(s), (36)

wheref(s) is the target distribution5. Rather than attempting to find an analytic solution,
we will approximate the integral with a large sample ofN points fromf(·) to obtain the
normalised log-likelihood,

L ≈
1

N

N
∑

n=1

log p(sn) (37)

This mixture model is then easily optimised with respect to the model coefficients using
EM. Figure 1 shows that a logistic distribution is accurately modelled using only three
Gaussians, whilst figure 2 shows that rather more Gaussians are required to approximate
a uniform. However this does necessarily mean that we shoulduse more Gaussians to
approximate uniform distributions than to approximate logistic. Recall that the (excess)
kurtosis measures the weight of the tails, where the kurtosis of a logistic is1.2 and the
kurtosis of a uniform is−1.2. Compare with the kurtosis obtained from the approxima-
tions using Gaussian mixtures6 shown in table 1. Ok, so this requires more interpration.

5This expression is also minus the (unnormalised) Kullback-Leibler divergence
6These numbers are only approximate because they were estimated from samples. A later version of this

document will (I hope !) give the analytic solution.

12

#kernels logistic uniform
3 0.5 -1.1
5 2 -1.2
7 4 -1.1

Table 1: Excess kurtosis for approximations of both logistic and uniform distributions using
mixture of Gaussians with various number of kernels.

5 Results

The algorithm works on data sets generated from correctly assumed distributions. Un-
fortunately, due to its currently un-vectored form, the MATLAB implementation is very
slow. I have not yet tested it on more interesting examples.

6 Conclusions

Inconclusive so far. However I think it is worth pursuing, not necessarily because the
current model (if made faster) is particularly good, but because it is a promising approach
to solving the blind deconvolution problem. A solution to this problem, which would
finally take advantage of the time-series nature of the data,could lead to useful filter.

13

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

p(k) µk Σk

0.2633 -0.2477 1.4873
0.4734 0 0.4523
0.2633 -0.2477 1.4873

p(k) µk Σk

0.0669 -1.3801 2.0138
0.2786 -0.3750 0.5309
0.3089 0 0.5246
0.2786 0.3750 0.5309
0.0669 1.3801 2.0138

p(k) µk Σk

0.0580 -1.3165 1.7092
0.1591 -0.8372 0.3562
0.1856 -0.1188 0.3108
0.1946 0 0.5808
0.1856 0.1188 0.3108
0.1591 0.8327 0.3562
0.0580 1.3165 1.7092

Figure 1: Using a mixture of Gaussians (shown solid) to approximate a logistic distribution
(shown dashed).

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

p(k) µk Σk

0.1844 -1.3552 0.0616
0.6312 0 0.4791
0.1844 -1.3552 0.0616

p(k) µk Σk

0.1190 -1.4880 0.0194
0.2422 -0.8879 0.0964
0.2776 0 0.1708
0.2422 0.8879 0.0964
0.1190 1.4880 0.0194

p(k) µk Σk

0.0739 -1.5819 0.0112
0.1634 -1.1508 0.0632
0.1816 -0.4382 0.1592
0.1623 0 0.2772
0.1816 0.4382 0.1592
0.1634 1.1508 0.0632
0.0739 1.5819 0.0112

Figure 2: Using mixtures of Gaussians (shown solid) to approximate a uniform distribution
(shown dashed).

14

References

[1] Timothy A Corbett-Clark. Introductory notes on independent component analysis
and the blind separation of sources problem. Technical report, Signal Processing
and Neural Network research group, Engineering Department, University of Oxford,
1999.

[2] D N Lawley and A E Maxwell. Factor Analysis as a Statistical Method. London:
Butterworths, second edition edition, 1971.

[3] John A Rice.Mathematical Statistics and Data Analysis. Duxbury Press, 1995.

[4] Sam Roweis and Zoubin Ghahramani. A unifying review of linear gaussian models.
Neural Computation, 11(2), 1999.

[5] Michael E Tipping and Christopher M Bishop. Probabilistic component analysis.
Technical report, Neural Computing Research Group, Dept ofComputer Science
and Applied Mathematics, Aston University, Birmingham,http://www.ncrg.
aston.ac.uk , September 1997. NCRG/97/010.

15

16

